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1
Introduction

The domain of the research reported in this thesis is Spoken Document Retrieval
(SDR), which is generally taken to mean searching spoken word content. It
implies matching a user information need as expressed in a textual query and
the content of spoken documents, and ordering the results in order of expected
relevance. Simply put, it means searching in speech in a way that is similar
to web-search. In its simplest form, an SDR system can be implemented as
shown in Figure 1.1. An Automatic Speech Recognition (ASR) system is used
to produce a textual representation of a speech collection. This ‘transcript’
of the speech is used as the basis for an Information Retrieval (IR) task. For
various reasons, automatic speech transcripts are bound to contain errors which
may subsequently cause a bias in the results of the SDR task. For example, if a
query term is erroneously omitted from a transcript, then the affected document
may be ranked lower in a search session than without this ‘deletion’. This
thesis proposes and investigates a methodology for evaluating speech transcripts
not just for the amount of noise but also for its impact on the results of the
information retrieval component.
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Figure 1.1: An overview of SDR with the system shown as a simple con-
catenation of ASR and IR.
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1.1 Searching Spoken Content

Until the late middle ages, information was passed on orally or in handwritten
form. The invention of the printing press opened up information to people in
such a radical way that its inventor Johannes Gutenberg was elected in one
poll as the most influential person of the millennium [Gottlieb et al., 1998]. In
a sense, the internet is an extension of the printing press in that it allows for
the publication of ideas, but without many of the practical barriers that were
prevalent in the olden days (at least in the Western world). As the amount of
information increased, as it first did in libraries and later on the internet, the
desire emerged for some kind of structured access in order to find the information
that is relevant for a specific need.

The initial solution before the invention and wide-spread use of computers
was to use a system of manually assigned keywords for finding books within a
library, often combined with a local index to further refine the search to pages
or sections within a book. As (textual) information was digitized, automatic
indexation became possible, paving the way for Information Retrieval as a topic
for scientific research. Manual indexation is quite different from automatic in-
dexation though: the former assumes decisions regarding relevance are made
during the indexation stage leading to a selective index, whereas the latter is
typically anticipating a retrieval stage where relevance is determined based on a
complete index. Search engines such as Google or Yahoo! are implementations
of best practices developed through scientific research in the field of IR and
they are at least partially responsible for the abundant use of the internet as an
information source to the general public.

More recently, the introduction of video-sharing portals such as YouTube
and Vimeo have extended the possibilities for publishing and sharing by provid-
ing hosting opportunities for audiovisual (av) information. From an information
retrieval perspective, access to this type of content often means a throwback to
the days of manually assigned keywords. Full automatic indexation of audio-
visual data in a manner that enables textual search is still an unsolved issue.
Currently, the most reliable way of finding relevant fragments in this type of
collection is through the use of manually assigned tags [Marlow et al., 2006],
or by using contextual information from comments or referring sites. In prac-
tice, the additional effect of collaborative tagging [Peters and Becker, 2009] on
popular av-sharing communities makes disclosure of the most popular content
relatively straightforward.

The main difference with a library context however, is that in libraries all in-
coming books are treated with a similar amount of attention, typically by people
with knowledge and experience of requirements of the tagging process. Also,
all incoming content has often been explicitly selected for inclusion, whereas
internet content is typically a mishmash of content of highly variable quality.
As av-sharing portals depend largely on user-generated tags, an unintentional
bias may be introduced in this manner into a tag-based retrieval system: more
popular content is likely to have better quality tags, and is therefore more likely
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to be found, and therefore more likely to receive additional tags. This makes
it desirable to have an automatic indexation mechanism working alongside a
keyword-based index in order to detect and potentially (manually) correct such
biases.

Older speech collections, such as interview collections or radio archives are
typically completely untagged. Retroactively adding such tags is often not fea-
sible due to the sheer amount of speech that would have to be processed by
hand. For example, in the context of the CHoral1 research project, the radio
archives of Radio Rijnmond were analyzed for automatic disclosure. As the
largest Dutch regional radio station in the Rotterdam area, its archives span
more than 20,000 hours of Dutch speech. All broadcast audio was archived and
labeled for broadcasting date, but no additional metadata was ever kept or cre-
ated for this collection. Despite being a potential treasure chest for historians
interested in the area and its people, the collection has mostly remained unused.
This is quite typical of (large) speech collections all over the world, especially in
the domain of cultural heritage. Without some kind of automated indexation
system, access to this type of collection is extremely limited.

Cases such as the Radio Rijnmond collection illustrate the potential for an
automatic indexing solution for speech collections. Once a speech collection is
stored in a computer-readable manner, and (computing) resources are available,
an SDR solution can be engineered. The typical approach is to automatically
generate a literal orthographic transcript of the speech using a Large Vocabulary
Continuous Speech Recognition (LVCSR) system. The resulting transcript can
then be treated as any other textual source and searched using Information
Retrieval technology in order to retrieve and play relevant fragments. The
usability of such systems is often thought of as inferior to text search, despite
collaborative, large-scale investigations having shown that this need not be the
case for English language broadcast news speech collections [Garofolo et al.,
2000b].

One of the reasons for the expected difference in performance is thought to
be the quality of the automatic transcript. English language studio-produced
broadcast news speech is an almost ideal case for automatic transcription, and
the number of errors in state-of-the-art systems for this type of speech can
be well below 10%. Most popular IR approaches are expected to be robust
enough to remain quite usable at this level of transcript noise. However, if
the type of speech, recording, or spoken language is not ideal, transcript noise
can rise rather quickly. For example, pilot experiments on the Radio Rijnmond
collection, containing a mix of rehearsed and spontaneous speech under various
conditions, indicated that transcript error rates exceeded 50%, much worse than
the 20% error rate that was typically achieved by this system on broadcast news
speech. In such conditions IR performance is expected to be reduced, with the
most affected documents potentially becoming impossible to find.

In order to enable optimal access to non-broadcast-news type speech collec-
tions, it is therefore essential that retrieval bias that results from transcript noise

1http://hmi.ewi.utwente.nl/choral/
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is recognized and avoided whenever possible. Any approach to the evaluation of
ASR transcripts for SDR purposes must include the consequences of errors on
the performance of the system as a whole. This can be achieved by evaluating
the effectiveness of the IR system, but this typically requires a large amount of
human-made resources, see Section 2.2.2. For most collections, these resources
cannot be generated and the effect of transcript errors on SDR performance
then remains unknown. Optimization of ASR system performance for a specific
collection and/or expected information need is therefore currently unpracticable
for many potentially valuable speech collections.

Disclosure of speech collections should not be restricted to academic envi-
ronments, and not to collections for which large amounts of human resources
can be expended. ASR systems provide ample opportunities for performance
optimization, but evaluation of transcripts has so far been either unsuitable in
the context of spoken document retrieval or hugely impractical. Implementing
and optimizing ASR for a collection and information need should be achiev-
able using off-the-shelf tools and without requiring a large amount of human-
generated, collection-specific reference material. Our aim is to develop an eval-
uation methodology that enables an analysis of the quality of ASR transcripts
which is both relevant in the context of spoken document retrieval and can be
implemented without the need for large amounts of additional resources.

1.2 Problem Statement

Simple information retrieval systems count the frequency of terms and the fre-
quency of documents that contain these terms to determine the potential rele-
vance of a text for a query. Despite being somewhat basic, this approach yields
quite usable results, but it also contains an inherent bias towards longer doc-
uments [Robertson and Walker, 1994]. Bias in search results is more or less
a given, as neutrality is virtually impossible to define in this context. More
advanced search mechanism such as used by Google or Bing try to avoid unin-
tentional biases by using techniques such as Pagerank [Page et al., 1999] and
personalization of results to intentionally introduce a different bias. An impor-
tant challenge in IR is ensuring that biases that result from technical deficiencies,
for example transcript noise in SDR, are properly recognized and where possible
managed.

In the case of SDR, it is reasonable to assume that segments of speech which
were transcribed rather poorly are likely to be ranked lower in comparison to
what would result from their true content. Speech recognition errors therefore
typically generate a negative bias for the correct retrieval of these segments.
Poor speech recognition performance is often caused by noisy conditions (e.g.,
street interviews), accented speech (e.g., non-american or non-native english),
or because of a mismatch in language use (e.g., the use of Named Entities or
technical terms not present in the ASR lexicon). Such conditions are neither rare
nor is it acceptable that they result in retrieval bias, as from a content point of
view the affected fragments may be just as valuable as any non-accented, clean,
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studio produced speech.

Evaluation of ASR transcripts is typically done using a count of errors,
expressed as the Word Error Rate (WER). When optimizing an ASR system
with the aim of reducing WER, it makes sense to first target the most frequent
terms and the most common accent. Although a lexicon of only 10 unique
terms (e.g., the, to, of, a ,and, in, is, that, for, and are) can cover more than
20% of all words that are spoken, it cannot express 20% of the meaning. The
task of ASR in an SDR context is to somehow turn the content of speech into
a form that is usable for a search engine, which is not necessarily equivalent
to producing a literal orthographic transcript. In order to achieve maximum
overall performance, one needs to have an evaluation mechanism that is capable
of reflecting this task.

At this point, it is important to make a distinction between intrinsic and
extrinsic evaluation methods. The former use data as-is and only evaluate in-
herent quality. A typical example is traditional ASR evaluation, which counts
the number of errors at the level of words. Extrinsic evaluation methods go
beyond the superficial characteristics of the outcome and measure the conse-
quences of errors for the overall quality of a system and the way it performs
a task. An example of this is IR evaluation, where errors are not measured
directly but only for their impact on the ability to rank relevant before non-
relevant documents.

Extrinsic evaluation of ASR transcripts in an SDR context can be achieved
using an (intrinsic) evaluation of the retrieval results of the SDR system. The
most popular method for determining the quality of retrieval results in a bench-
marking context is Mean Average Precision (MAP). Although this measure is
primarily suitable for comparing retrieval systems, there is no reason to assume
that it cannot be equally useful for comparing transcript quality. Comparisons
between IR performance on a ground-truth reference transcript and on an au-
tomatic transcript of speech, for example by using relative MAP, can be used
to detect biases that result from transcript noise.

To calculate MAP, one needs relevance judgments for all stories in the results
of an IR task (more on this in Chapter 2). With result lists typically containing
around 1000 stories, and a simple evaluation needing at least 25 queries, this is
rarely feasible. As a consequence, extrinsic evaluation of speech transcripts is
practically impossible if we are limited to using MAP. We feel there is a need
for a novel extrinsic evaluation paradigm, specifically one that can be used by
anybody able to use an ASR system and requiring no more resources than for
calculation of WER.

1.3 A Novel Approach to ASR Evaluation in an SDR
context

In this section we first discuss how ASR-for-SDR was evaluated in benchmark
conditions up until now, and why this is unfeasible for many ad-hoc collections.
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We then propose an alternative which is as easy to implement as traditional
ASR evaluation. The validity of the new approach for our application depends
on the correlation between the new and old approaches. If the new approach
results in values that have a high linear correlation with the traditional approach
under a wide range of conditions, then one can reasonably assume that the two
approaches measure the same thing. If the two approaches result in the same
ranking of systems under a wide range of conditions, then they can be thought
of as functionally equivalent for scenarios where system ranking is the main
target.

1.3.1 TREC-style ASR-for-SDR Evaluation

Evaluation of SDR systems has traditionally focussed on challenges related to
automatic transcription as the rest of an SDR system’s tasks is largely similar
to textual IR configurations that have been researched extensively in the con-
text of the various Text REtrieval Conference (TREC) benchmarks, see Section
2.2.4. A basic evaluation of automatic transcript quality is a standard pro-
cedure when deploying an ASR system on a new task. It involves making a
word-by-word comparison between a ground-truth reference and the automat-
ically produced hypothesis transcript. To evaluate SDR, and specifically the
impact of using speech rather than textual sources, the process is much more
complex; an overview is shown in Figure 1.2.

!

!

"#$%&'$!

!

!

()##*+!

,%'-./0*!

()##*+!

"#*-1230-2!

,%'-./0*!

('-45!

(#1.#2'/0-2!

627-4./0-2!

"#'43#8/&!
9:"! ;,<!

=>?#$'!

@4/2$*43)'!

A4#&$!

627-4./0-2!

"#'43#8/&!

!

!

"#$%&'$!

;,<!

,("!

7-4!

(B"!

"#7#4#2*#!

(#1.#2'/0-2!

"#7#4#2*#!

@4/2$*43)'!
A%#43#$!

Figure 1.2: A schematic overview of ASR-for-SDR evaluation using rela-
tive MAP as quality measure.

In Figure 1.2, the red circles indicate two manners of evaluating the ASR
process: WER and ‘ASR-for-SDR’. The former is the standard intrinsic ASR
evaluation that is typical for dictation-type systems, and the latter is an ex-
trinsic measure in which MAP is compared for IR on a reference and on an
automatic transcript. MAP is one of the most popular IR evaluation meth-
ods, however, its absolute value is highly dependent on the collection and the
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queries used. In practice MAP is mostly used to rank systems, meaning only
relative performance is established. For ASR-for-SDR evaluation it therefore
makes sense to characterize the impact of transcript noise also by relative MAP,
in this case for the difference between a noisy transcript and a ground truth
reference.

A complete SDR system can be thought of as a black box that takes speech
and queries as its input, and produces a ranked list of relevant fragments as its
output. Such a system would require automatic speech recognition, automatic
story segmentation, and information retrieval as its main components. Both
ASR and IR solutions are readily available in off-the-shelf versions, for exam-
ple Sphinx [Lee et al., 1990] and Nuance/Dragon2 for speech recognition and
Lemur3 and Lucene4 for information retrieval. Automatic story segmentation
has not been investigated very extensively in this context, but an algorithm such
as TextTiling [Hearst, 1994] has been shown to provide workable results, and
implementations are freely available for various programming languages.

In addition to these functional components needed for performing the SDR
task, extrinsic evaluation of ASR transcripts in an SDR context requires a num-
ber of resources. For basic ASR transcript evaluation, only spoken word content
and a corresponding ground-truth reference transcript are required. In an SDR
context, additional resources must be provided for extrinsic evaluation using
MAP: a (reference) segmentation of the spoken content into retrieval units, top-
ics/queries that are appropriate for the transcribed part of the collection, and
relevance judgments for each query on every retrieval unit (qrels). Of these,
qrels are usually the hardest to come by, as they are based on subjective judge-
ments by humans [Voorhees, 2000]. For a small collection of only one thousand
documents and 25 queries, up to 25,000 individual human-made judgments may
be needed. Common practice in the creation of qrels is to only judge documents
that are produced by various baseline retrieval systems, reducing the challenge
slightly. However, for research purposes on SDR, some flexibility in the choice
of topics/queries may be needed, something that is severely impaired by the
laborious task of qrel creation. An additional caveat is that ideally, relevance
judgments should be made on audio content rather than a transcript, as some-
times relevance may depend on (typically untranscribed) affect or non-verbal
aspects of the recording. Outside of large benchmark settings, it is rarely feasi-
ble to generate a workable set of qrels for realistically sized textual collections,
for speech collections it is likely to be even harder.

Performing an extrinsic evaluation of transcripts in this a manner is a rather
unattractive scenario for someone developing an ASR system. A person opti-
mizing an ASR system for use on a particular collection is typically expected to
provide the resources needed for WER calculation. As SDR requires retrieval
units, a transcript must typically be segmented into coherent stories. Addition-
ally providing a reference segmentation implies only a limited amount of extra
effort, and using off-the-shelf solutions for story segmentation and IR is also

2http://www.nuance.com
3http://www.lemurproject.org
4http://lucene.apache.org
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quite feasible. However, creating queries and corresponding qrels is extremely
time-consuming. As such, the ‘ASR-for-SDR’ evaluation that was done in the
TREC SDR benchmarks and is shown in Figure 1.2 is simply not realistic for
ad-hoc ASR system development.

1.3.2 Easy ASR-for-SDR Evaluation

The main reason why a TREC-style approach to ASR-for-SDR evaluation is
unattractive for most practical scenarios is the need for qrels and the potential
size requirement of the manually transcribed reference. Segmentation into co-
herent stories should be relatively easy to integrate into the manual transcription
procedure, but generating queries is not so straightforward. The developer of an
SDR system is not necessarily a user as well, and unless the collection has been
manually transcribed in full, queries must be targeted towards the available por-
tion of a collection. Our aim is to provide a framework for extrinsic evaluation
of ASR-for-SDR which does not require any additional resources beyond what
is typically used in traditional ASR evaluation, i.e., it should work with only a
literal reference transcript of a small portion of the collection. In order to allow
for the type of detailed analysis that is possible when using traditional extrinsic
evaluation, the option should exist to manually provide additional resources in
the form of story segmentation and queries, however a need for qrels must be
avoided at all cost due to their inherent expense.
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Figure 1.3: Overview of a proposed novel framework for to ASR-for-SDR
evaluation without the use of qrels or a need for manually generated queries
and story boundaries.

Our proposal for such a system is shown in Figure 1.3. The left side of the
schematic shows a traditional ASR evaluation process, whereas the right side
can be used as a ‘black box’ for ASR-for-SDR evaluation. The dashed lines
indicate optional resources. The functional elements in the right part can be
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implemented using off-the-shelf solutions. The main advantage of this approach
is that qrels are no longer needed as MAP is not used anymore.

Having the right hand side of Figure 1.3 function in a fully autonomous
manner requires, in addition to an IR system, automatic story segmentation
and automatic query generation modules. We also need to process the difference
between the ranked results from IR on a reference transcript and IR on an
automatic transcript, in such a way that the resulting ASR-for-SDR measure
is highly correlated with relative MAP. Furthermore the proposed evaluation
model should work with a similar amount of manual transcripts as traditional
ASR evaluation with WER. Only then can the approach as shown in Figure 1.3
be used as a functional replacement for the one in Figure 1.2.

1.4 Research Questions

The evaluation platform for ASR-for-SDR from Section 1.3.2 requires an IR
system, and three other main components: i. automatic story segmentation,
ii. comparing ranked results lists, and iii. automatic query generation. Several
potential solutions for each of these can be found in the literature, but we need
to establish which approaches work best in the context of the proposed system.
We need to determine which method of comparing ranked results lists results
in the highest correlation between MAP and ASR-for-SDR and how we may
generate queries for such an evaluation. In addition we need to determine the
amount of transcripts, and the number of topics/queries needed for reliable
evaluation.

The design and implementation of each of the components is presented in a
separate chapter. In this section we give an overview of the research questions
that we aim to address in this thesis.

1.4.1 Automatic Story Segmentation

An automatic story segmentation task was researched as part of the Topic De-
tection and Tracking (TDT) benchmark [Fiscus and Doddington, 2002]. The
implementation that was most popular in that context required the use of man-
ually labeled training material for the probabilistically motivated algorithms to
learn from. As our aim is to provide a method that can be used in isolation
without any additional resources, the approaches that were used in the TDT
segmentation task are typically unsuitable. In addition, the TDT segmentation
evaluation relied on a cost-function, which is an intrinsic measure. Our need is
for a segmentation system that works well in the context of an SDR system, of
which we can only be sure if we do extrinsic evaluation.

We discuss several methods of automatic story segmentation that can be
used without any collection-specific additional resources. The performance of
these methods must be tested in an SDR context, so we use relative MAP to
compare between automatically generated (artificial) and human-made (refer-
ence) boundaries. The research questions that we aim to answer are:
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• Does extrinsic rather than intrinsic evaluation of artificial story boundaries
lead to different conclusions with regards to the best choice of segmenta-
tion method?

• Which is the best method for automatic story segmentation without using
additional resources in the context of SDR, based on extrinsic evaluation?

• What is the impact of artificial story boundaries on retrieval performance
of an SDR system when compared to a reference segmentation?

1.4.2 Speech Transcript Evaluation for SDR

The core of the evaluation process that we proposed in Section 1.3.2 is the
comparison between ranked results lists as produced by IR on a reference and an
automatic transcript. This process is an extrinsic evaluation for the transcript,
i.e., it measures the impact of the ASR noise on the results of the entire SDR
process. Alternatives to WER that have been proposed so far were intrinsic
and only showed some partial dependence on the IR system, for example by
including some of the IR preprocessing or by focussing on terms with a higher
expected importance, such as Named Entities.

Our aim is to establish methods for fully extrinsic evaluation that have high
correlation with relative MAP. In addition, we investigate intrinsic approaches
that are potential alternatives for WER, for example if the fully extrinsic ap-
proaches provide unsatisfactory results. The research questions that we inves-
tigate are:

• Can we evaluate ASR transcripts in an intrinsic manner that is more
appropriate for SDR than traditional WER?

• Which method for extrinsic evaluation provides the highest correlation
with relative MAP?

• Can extrinsic evaluation of ASR transcripts without qrels be reliably used
to predict relative MAP?

1.4.3 Artificial Queries and Transcript Duration

Manually creating queries without qrels for ASR-for-SDR evaluation is expected
to be quite feasible and possibly also quite desirable, as this enables one to focus
specifically on the type of information requests that are expected to occur most
frequently in the use of the system. However, if queries cannot be generated
by actual users of the system, an alternative may be found in automatically
generated queries. A reasonable approach might be to follow patterns that
can be learned from other, well-studied, systems such as those found in TREC
benchmarks. We implement an automatic query generation algorithm and test
whether it results in ASR-for-SDR performance that is similar to using real
queries. In addition we examine the amount of artificial queries that is required
for reliably estimating ASR-for-SDR performance.
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One of the concerns with using relative MAP for extrinsic ASR transcript
evaluations, besides its reliance on qrels, is that one may need more reference
material than for WER to get a meaningful result. MAP is calculated from
qrels, which are a binary division of the collection into relevant and non-relevant
stories. If the collection is very small, this division may be too coarse for getting
an accurate estimate of MAP. A direct comparison of ranked results shouldn’t
have this problem, but may still require more resources than needed to calculate
WER. It is important that the demands on the amount of manual transcripts
do not limit the use of the extrinsic measures. We shall therefore examine
how the ASR-for-SDR measures respond to the amount of reference transcripts
that is available. As this requires experiments on many different subsets of the
full collection, we use artificial queries. We formulate the following research
questions:

• How many (artificial) queries are needed to reliably estimate ASR-for-SDR
performance?

• Which method for automatic query generation results in the highest cor-
relation between ASR-for-SDR measures and MAP as calculated from real
queries?

• How is the reliability of the ASR-for-SDR performance measures affected
by the duration of the manually transcribed reference speech?

1.5 Organization

Although this thesis is intended to be a single work, to be read in a linear man-
ner, we also wanted to make sure that the various chapters are comprehendible
on their own. As a result, there is some repetition in the argumentation and
description of the test collection. We attempt to keep these to a minimum and
refer to earlier chapters/sections as needed.

This thesis is organized as follows: A basic overview of Automatic Speech
Recognition and Information Retrieval is provided in Chapter 2. It is intended
to serve as an introduction for readers without a background in these fields, and
provides explanations of the basic concepts that are used in this thesis. The
first set of research questions, concerning automatic story boundary generation
is investigated and answered in Chapter 3. Various methods of intrinsic and
extrinsic ASR evaluation methods are proposed and examined in Chapter 4 in
order to answer the second set of research questions. Automatic query gener-
ation and the requirements on the amount of references needed are dealt with
in Chapter 5 along with answers to the third set of research questions. A short
summary and conclusion are provided in Chapter 6.





2
Background

Implementing a Spoken Document Retrieval system involves a combination (or
concatenation) of automatic speech recognition and information retrieval. As
a result, this domain of research has received interest from both fields, as was
demonstrated in the largest SDR benchmark so far (TREC SDR, 1997-2000).
Some speech-oriented groups generated their own transcripts (Limsi, Cambridge
University, Sheffield University), whereas other groups (AT&T, CMU) used the
transcripts provided by TREC and focused on maximizing performance from
their own flavor of retrieval engine.

Because the interests of readers of this thesis may be quite different, com-
ing from either an IR or ASR research agenda, we cannot expect them to be
intimately familiar with all important concepts from both fields. This chapter
provides introductions to ASR and IR which should make the rest of this the-
sis more accessible for readers unfamiliar with both or either of these fields of
research. A general overview of the workings of the ASR and IR approaches on
which we build in our own research is included, but it is in no way exhaustive.
For most of the methods we use, alternatives are available. We have however
tried to use methods that are exemplary for the rest of the field and that repre-
sent the most popular approach in past benchmarks. The focus in this chapter
is on aspects that return later in this thesis and have implications for SDR as
we implemented it.

This chapter presents an overview of the workings of an Automatic Speech
Recognition system in Section 2.1 and some basic information on popular ap-
proaches to Information Retrieval in Section 2.2. The chapter ends with Section
2.3 which includes some reflections on issues that arise when the two fields are
combined. As this chapter contains no new research results, it can safely be
skipped by anyone who is already sufficiently familiar with these subjects.

2.1 Automatic Speech Recognition

The transformation of speech into text has been a subject of research almost
since the invention of computers, but has only started to improve significantly
since the mid-1970s as computing power became sufficient for doing meaning-
ful experiments within an acceptable time frame. Statistical modeling of speech
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signals has been the basis of most ASR research, meaning that it was dependent
on the availability of labeled data sets for training. The development of corpora
that could be used as training material was an essential component in generat-
ing the performance improvements needed to make ASR a practical proposition.
The National Institute of Science and Technology1 (NIST) and the Linguistic
Data Consortium2 (LDC) have been instrumental in the creation, annotation,
and distribution of speech and language resources for the scientific community.
In addition, several tools have become available that could be deployed for sci-
entific research purposes, including the Hidden Markov Model Toolkit (HTK)
[Young et al., 2006] and Sphinx [Lee et al., 1990] speech recognition systems, and
the Stanford Research Institute Language Modeling toolkit (SRILM) [Stolcke,
2002]. Together these tools enable building a complete basic speech recogni-
tion system without having to develop additional resources or perform low-level
programming.

The remainder of this section provides an overview of the most important
concepts in the automatic speech recognition process and its evaluation. We
are will not cover functionalities such as knowledge representation (e.g., MFCC
[Davis and Mermelstein, 1980], PLP [Hermansky, 1990]), speech signal normal-
ization (e.g., CMS [Rosenberg et al., 1994], RASTA [Hermansky and Morgan,
1994], VTLN [Eide and Gish, 1996]), or adaptation (e.g., MAP [Gauvain and
Lee, 1994], MLLR [Leggetter and Woodland, 1995], eigenvoices [Kuhn et al.,
1998]) as these are mostly of interest for improving the state-of-the art in speech
recognition and are not needed per se to understand the typical challenges for
SDR research. Subjects that are included in this section are the basic speech
recognition process (Section 2.1.1), evaluation and performance (Section 2.1.2),
transcription alternatives (Section 2.1.3), and confidence scoring (Section 2.1.4).

2.1.1 Implementation

Due to the complexity of automatic speech recognition, even a proper overview
of only the fundamentals would require more space than can reasonably be
accommodated in the context of this thesis, but such overviews can be found in
many other publications, e.g., [Rabiner and Juang, 1993, Young et al., 2006]. For
readers unfamiliar with ASR in general, this section provides an introduction to
some of the components in the most commonly used and most successful speech
recognition systems. Figure 2.1 provides a high-level overview of the general
process based on its functional components.

Audio can be represented either in the time domain, as a pressure wave, or in
the frequency domain, composed of several distinct frequency components each
with its own phase. Both representations are mathematically interchangeable,
but the latter is much more convenient for statistical modeling due to the noisy
phase component being separated from informational content: the levels of the
frequency components, which can be used for spectral analysis. The frequency

1http://www.nist.gov
2http://www.ldc.upenn.edu
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Figure 2.1: Overview of an automatic speech recognition system. Acoustic
data is processed into feature vectors; these can be matched to trained models
and the most likely sequence of terms is produced as transcript.

domain representation undergoes a lossy conversion into a stream of feature
vectors, using windows of typically 25ms length, also called frames. Each vec-
tor contains the levels of 12 frequency bands plus an overall energy level. The
frequency bands are usually based on a non-linear filter-bank [Burget and Her-
mansky, 2001], to ensure a frequency resolution that is similar to the sensitivities
of the human ear. To optimize the information content for the statistical mod-
eling of each band, the bands undergo a basic decorrelation [Ahmed et al., 1974]
process. The 13 feature values are then augmented with delta- and delta-delta-
components which model the difference with previous windows, resulting in a
vector of 39 feature values per frame.

Speech is a concatenation of words, and words are built from individual
sounds. The smallest component of speech that signifies a difference in meaning
is called a phoneme. Which phonemes must be distinguished depends on the
language. For English around 45 different basic phonemes are typically sufficient
[Rabiner and Juang, 2003]. Using a (large) corpus of speech frames that are
labeled for phoneme, one can capture statistical properties of such phonemes
in acoustic models using Hidden Markov Models (HMM) [Young et al., 2006].
HMM’s are a cornerstone of most ASR systems, being capable of capturing
statistics on both feature values and time distortions. One can use HMM’s to
produce a probabilistic match between incoming speech frames and phonemes.

Choosing the most likely sequence of phonemes results in a phonetic tran-
script of the speech. Although there are circumstances where this is the desired
output, the typically high error rate of such a transcript means that it is rarely
suitable for dictation-type applications. An additional modeling layer is there-
fore added which contains a lexicon to limit the allowed phoneme sequences
to known words, and language models which boost the likelihoods of word se-
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quences that were previously found to naturally occur in use of the language.

Word sequences are scored using bi-, tri-, or fourgram language model likeli-
hoods [Manning and Schutze, 1999]. The primary task of language models is to
provide likelihoods for the co-occurrence of terms. Language models contain in-
formation about the a priori likelihood of a word occurring, i.e., where is a more
frequent term than lair, but also about the conditional likelihood of a term,
i.e., the lair of the dragon is a more likely phrase than the where of the drag
on, despite the a priori likelihoods of the individual terms in the latter phrase
typically being higher than those in the first one. The task of the decoder is
to provide likelihoods for each possible combination of terms, given the feature
vectors. But as the number of combinations for most practical applications is
prohibitively high [Renals and Hochberg, 1996], the task is usually reduced to
only providing, or rather finding, the most likely transcript. Alternatives to a
literal transcript can take the shape of an n-best list, containing the top-n most
likely transcripts, or a representation of the considered search space as a lattice
structure, see Section 2.1.3.

An ASR decoder stage combines likelihoods as obtained from models of
phonemes (acoustic models), a lexicon, and a model of the grammar (language
models) into an overall likelihood score for a potential transcription of an utter-
ance. The models are typically task-specific, so when a system is used for tran-
scription of English language telephone conversations, one would use bandwidth-
limited acoustic models of English phonemes. Further specialization can take
place by using gender-specific models, or using models of accented speech, or
even speaker-specific models when available and beneficial.

A large lexicon, e.g., one that contains all words that can reasonably be
expected to occur in the language, seems attractive on the surface, but increases
the potential search space of a transcription system. Furthermore, it may be
difficult to correctly estimate the language model likelihoods of all these terms.
A larger lexicon contains an increasing amount of rare terms, and since these
terms are typically automatically learned from textual corpora, they may simply
be misspellings. In extreme cases, this may result in an increase in the number
of transcription errors, despite a reduction in Out-Of-Vocabulary (OOV) rate
– words that were uttered but not in the lexicon. A high quality ‘traditional’
dictionary contains over a 170k entries3, not including named entities. But one
can achieve an OOV-rate of less than 2 per cent using a lexicon of around 65k
(normalized) terms, which is a typical lexicon size for an English language ASR
system, including named entities. State-of-the-art ASR systems sometimes use
lexicons that contain 500k terms when the transcript is required to have proper
capitalization, or for languages that have many compound words [Despres et al.,
2009].

Bigram language models represent the likelihood of term B occurring after
term A has been observed, trigrams extend the context to the two previous
terms and fourgrams to the previous three terms. Given the exponential growth
in the number of possible sequences, language modeling for ASR is typically

3http://oxforddictionaries.com
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limited to trigrams. Using a general model of the language is already quite
helpful in reducing the error rate of a transcript, but when a collection is on a
specific subject, for example legal matters, World War II, or business meetings,
there is potential for performance improvements through the use of task-specific
language models. These are then typically ‘mixed’ [Clarkson and Robinson,
1997] with a general model as language models usually benefit tremendously
from having an abundance of training material for estimation of likelihoods
[Brants et al., 2007].

From the perspective of SDR, it is tempting to view speech recognition as
a black box which simply converts the audio samples into a computer-readable
textual representation. But as we just explained, there are many parameters
and models involved, all of which can and should be tuned towards a specific
task. In the case of SDR, this means that models must be chosen or adapted to
reflect the type of speech and language use that is found in the collection. In
addition, it may be necessary to optimize for the expected information requests,
for example by including all terms in the lexicon that are expected to be used
in queries.

2.1.2 Evaluation & Performance

The standard measure for automatic speech transcript quality is Word Error
Rate (WER). It is calculated using the minimum Levenshtein distance [Leven-
shtein, 1966] between a reference (ground truth) transcript and a hypothesis,
with alignment done at the word level. This alignment results in differences
showing up as insertions (I), where a term was hypothesized but no equiva-
lent term was found in the reference, deletions (D) which are the opposite, and
substitutions (S), where one term was erroneously transcribed as another. The
sum of insertions, deletions, and substitutions is divided by the total number of
terms in the reference transcript (N) to produce WER, see Equation 2.1. Word
Error Rate can be interpreted as the relative number of alterations that needs
to be made (by a human) to an automatic transcript in order to correct it.
Optimizing for WER is standard practice in speech transcription system devel-
opment, especially for dictation-type tasks, where transcript noise may need to
be removed retroactively. This is a relatively costly process as it must be done
manually.

WER =
I +D + S

N
× 100% (2.1)

For the ASR application that is central in this thesis, spoken document re-
trieval, the requirements are only superficially similar to those of a dictation
task. In contrast to dictation-type applications, transcript errors are typically
not corrected, as speech collections that are disclosed using SDR technology are
usually of a size that requires bulk processing of the audio with only a mini-
mum amount of human intervention. Errors therefore do not impact the time
needed for post-processing, something that seems reasonably well addressed by
WER, but they do impact the performance of the retrieval component of the
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SDR system. In such situations, not the amount of errors determines retrieval
performance, but rather the way these errors influence the search results. Word
error rate offers a limited perspective on transcript quality, one which is mostly
targeted towards traditional uses of ASR technology.

For NIST speech recognition benchmarks, WER has been the de facto mea-
sure of transcript quality. Figure 2.2 shows how WER has progressed in the best
systems participating in the various NIST speech recognition benchmarks be-
tween 1988 and 2009. The various colors/markings represent different types of
speech and different languages. More recent benchmarks have not only tried to
pose bigger challenges for the participating systems, resulting in lower (initial)
performance, but provided a platform for further development and performance
gains. It is clear to see how ‘Read Speech’, and targeted applications such
as ‘Air Travel Planning Kiosk Speech’ result in much better performance than
‘Conversational Speech’ and ‘Meeting Speech’.

Figure 2.2: Historic performance in terms of WER of speech recognition
in official NIST benchmarks from 1988 to 2009

As Figure 2.24 clearly shows, the expected performance of the ASR com-
ponent is highly dependent on the type of speech that is in the collection. In
the TREC SDR benchmarks, investigating performance of spoken document
retrieval systems, only broadcast news speech collections were used. As such,

4http://www.itl.nist.gov/iad/mig/publications/ASRhistory/index.html
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the quality of those transcripts was relatively high, in fact, performance was so
good as to lead to the matter of ASR for SR on broadcast news famously being
declared solved [Garofolo et al., 2000b]. For many other types of collections
this may not be the case though, as ASR clearly struggles with several types of
speech, e.g. non-scripted and conversational speech.

As WER was suspected to be suboptimal in the context of SDR, Term Error
Rate (TER) [Johnson et al., 1999] was suggested as an alternative in the course
of the TREC7 SDR benchmarks [Garofolo et al., 1998]. Information retrieval
technology usually treats a collection of textual documents as ‘bags-of-words’,
i.e., only the number of occurrences of words is considered, not their order. If
word order is of no importance in an IR system, then it can also be ignored
in evaluations of ASR transcripts for use in SDR. The main difference between
TER and WER is that the former disposes with the alignment of reference and
hypothesis, and instead uses differences in word-counts, see Equation 2.2, where
A(w, d) is the number of occurrences of term w in the automatic transcription
of document (or story) d, B(w, d) the number of occurrences in the reference
transcript, and N the total number of terms in the reference.

TER =

∑
d

∑
w|A(w, d)−B(w, d)|

N
× 100% (2.2)

Intrinsic evaluation of transcripts, i.e., evaluation on inherent properties of
the transcript, has until now been the standard approach to optimizing ASR
performance. But the impact of ASR errors on the performance in a specific
scenario of use can only be truly determined if an extrinsic evaluation is done,
i.e., using the transcript in its intended context. For SDR, this suggests feeding
transcripts into an IR platform and then evaluating the system as a whole.
As setting up a collection-specific IR evaluation is rather time-consuming, see
Section 2.2.2, and unsuitable for a system optimization workflow, an alternative
approach is needed. This thesis investigates the implementation of such an
alternative approach to ASR transcript evaluation.

2.1.3 Transcription Alternatives - Lattices

The 1-best literal orthographic transcript that is typical for dictation-type ASR
is not the only viable way of transcribing speech. In an SDR context, where the
transcript is used as an information source for IR and need not be presented
to a user directly, any computer readable representation may be suitable. One
potentially interesting alternative representation is a speech recognition lattice.
In essence, an ASR system scores multiple possible transcripts for their match
with the speech data. Generating the 1-best output is a process where the most
likely candidate is selected, given the search space. This search space can be
represented using a confusion network or lattice: a graphical structure that rep-
resents (part of) the search space that was evaluated by the speech recognition
system, typically including the various likelihood scores [Young et al., 2006]. A
lattice not only contains the most likely candidate for each position, but also
other potential transcripts that were considered during the decoding process.
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Figure 2.3 is an example of a very small lattice in which at most three alter-
native terms for each position are shown. Typically an ASR process considers
thousands of candidates for each position, but visualization of such a search
space would be counter-productive. This particular example shows 25 num-
bered nodes, which are connected by arcs which represent words and scores.
The scores are transcription likelihoods and depend on the context in which
they occur, so a lattice may have the same term occurring multiple times at
a single position, but each time with a different associated likelihood, due to
a different context. Lattices are a very rich source of information and can be
extremely useful for optimization of systems, as they allow for quick modifica-
tions of likelihoods and may subsequently produce a different 1-best transcript.
Rescoring of lattices is a powerful way of estimating the impact of changes in
language model scoring without the need to redo an entire ASR task. One po-
tential drawback of a lattice representation is that it is difficult to determine its
intrinsic quality, as the desired properties of a lattice are entirely dependent on
its application.

Figure 2.3: A 25-node lattice with words and scores on arcs.

The use of lattices in SDR applications has been rather limited so far. One
of the main reasons seems to be that a straightforward implementation in which
each term in a lattice is included in an index, but with a reduction in weight
based on its likelihoods, has not resulted in appreciably improved performance
[Saraclar, 2004]. A likely reason for this is that many ASR systems operate with
a WER of under 30%. When less than 30% of terms in the 1-best transcript are
incorrect, this means that all alternatives are incorrect for 70% of word positions.
When the correct word is in fact OOV or the error is the result of severe noise,
the correct term is unlikely to be present in the lattice at this position, making
the potential for improvement (much) less than the actual error rate. Weighting
down the transcription alternatives is not really a solution either as this will
also weigh down correct alternatives for errors in the 1-best, reducing potential
benefits even further.

Although direct indexation of a lattice may not have yet resulted in improved
performance, one could still look for other manners to benefit from their use in
SDR. Rescoring of lattices is a relatively quick process when compared to a
full ASR run, and may result in an improved 1-best, especially if additional
information can be added to the decoding. Improved language models which
are based on user-provided information for example may be beneficial without
the need for new acoustic models. Another potential application of lattices in
SDR is by incorporating transcript alternatives in combination with the use of
proximity information [Chelba and Acero, 2005].
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2.1.4 Confidence Scores

One of the most immediately useful applications of speech recognition lattices
is the ability to calculate confidence scores. Imagine a situation where we want
to know not just the most likely transcription of an utterance, but also the
probability that this transcript is correct. A standard Viterbi [Viterbi, 1967]
decode provides us with a likelihood score, but this is just a very small number
that is highly dependent on the duration of the utterance and its other acoustic
properties. In order to know the probability that the 1-best output is correct,
we need to know the likelihood for every possible transcript, and normalize for
the sum of all likelihoods. This is usually not feasible due to the sheer amount
of potential transcripts. Lattices however, contain a limited subset of the search
space, typically containing only the most likely transcripts. If we then assume all
word sequences not supported by the lattice to have a negligible likelihood, we
can normalize the utterance-likelihood using only the paths in the lattice. This
gives us the probability of a transcript being correct, given a certain search space
(the lattice). Such a probability is often referred to as ‘posterior probability’ or
confidence score.

Confidence scores open up new ways of optimizing the performance of an
ASR system, as they can not only be calculated for an entire utterance, but
also for each word. Calculation of a word-posteriors is done by summing the
likelihoods of all paths q passing through a certain link l (representing a term in
the transcript), normalized by the probability of the signal p(X), which is the
sum of the likelihoods over all paths in the lattice [Evermann and Woodland,
2000]. For example, Equation 2.3 can be used to calculate posteriors, with
pac and plm being the acoustic and linguistic likelihoods, and γ a scaling factor.
Such posteriors are suitable for decoding a lattice into a 1-best transcript [Mangu
et al., 2000] and using ‘consensus decoding’ optimizes for errors at the word level,
generally resulting in a lower WER than Viterbi decoding, which optimizes for
errors at the utterance level.

p(l|X) =

∑
Ql
pac(X|q)

1
γ plm(W )

p(X)
(2.3)

One of the desirable properties of word-posteriors is that all links are assigned
a posterior, and as a consequence of the normalization, the sum of the posteriors
for all links that cover a certain acoustic frame add up to one. This is especially
nice in the context of lattice-based indexing, as the sum of all word-posteriors
in a lattice is equal to the expected number of words in the utterance. An
important limitation of posteriors is that they only take into account what is
explicitly represented in the lattice: if the actual word that was uttered at a
particular time was not part of the search space, or not in the lattice due to
pruning, then the posteriors of the terms that are in the lattice at this position
still add up to one, despite none of them being correct! On average, posteriors
are therefore higher than the statistical probability of a term being correct, so
one must be careful when using a posterior literally as probability.
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2.1.5 Summary

Automatic speech recognition is a statistically motivated process in which the
combination of training material and parameter optimization largely determine
speech transcript quality. The default configuration of many speech recognition
systems is optimized for dictation-type use, targeting a minimal WER for the
1-best transcript. When used in an SDR context, this may not be optimal as not
only the amount of errors but also the type and content of the affected words
is important. Optimizing ASR systems is typically a matter of correctly setting
various parameters, and adapting the lexicon and the acoustic and linguistic
models to a specific task, but this can only be done efficiently if we properly
evaluate the quality of the transcript in context. In addition, by using lattices
and confidence scores, more information from the recognition process can be
obtained, which may subsequently be used for enhancing the performance of an
SDR system.

2.2 Information Retrieval

For many users Information Retrieval is almost synonymous with web search,
as this is the most high-profile use of the technology these days. However,
(automatic) IR has been studied long before the advent of the internet. The
development of the SMART IR system [Salton, 1971] and the availability of an
evaluation method through the Cranfield experiments in the 1960s [Cleverdon
and Keen, 1966] gave researchers the tools they needed to make meaningful
progress in the field. Several decades later, in 1992, the Text Retrieval Con-
ference (TREC) [Voorhees and Harman, 2005] was organized for the first time.
This series of evaluation benchmarks was specifically aimed at IR on large col-
lections, making it possible to see how well the systems that had been developed
up until then would perform when scaled up to large-size collections. Since the
initial TREC, there have been many developments that triggered the introduc-
tion of novel approaches, such as the increasing popularity of the internet and
web search.

The second part of this chapter is provides an overview of what we consider
‘traditional’ information retrieval techniques. The implementation of IR that we
use in this thesis does not deal with issues such as interrelatedness of documents
or multilingual aspects as these do not relate directly to the research questions
we aim to answer. We also do not attempt to maximize IR performance through
techniques such as document or query expansion, as these introduce additional
parameters and may detract from the core performance we wish to analyze.

After summarizing the basic IR process in Section 2.2.1, Section 2.2.2 pro-
vides a short summary of what the Cranfield paradigm entails as this is still
the basis of most current IR evaluation. This is followed by Section 2.2.3 on
one of the most successful approaches to document ranking in the TREC IR
benchmarks: Okapi/bm25, which is the ranking method that was used for all
our experiments in this thesis. The TREC benchmarks on spoken document re-
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trieval are discussed in Section 2.2.4, along with the TDT-2 collection that was
used for those benchmarks and that is also the collection that we used to test
our methods. Section 2.2.5 gives a short introduction to known-item retrieval,
a different approach to information retrieval, which inspired us in developing a
query generation algorithm. Finally, we present some overall thoughts on IR in
relation to spoken document retrieval in Section 2.2.6.

2.2.1 Implementation

Information retrieval is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need
from within large collections (usually stored on computers).

This is the definition of information retrieval as given in [Manning et al., 2008],
one that is broad enough to include Spoken Document Retrieval as a form of
IR. Effectively, an Information Retrieval system has the task of doing what is
described in the above definition automatically. This is typically implemented
by scoring all documents in a collection for their similarity with an information
need as expressed through a query, and producing the documents in descending
order of similarity.

Making the conversion between fuzzy information need and query autonomously
is not possible within the current state-of-the-art of computer science. Such an
endeavor would probably require too high a level of artificial intelligence in
communicating with the user as well as interpretation of the content of the col-
lection. As formulating a query is an essential task in IR, this makes automatic
systems mostly just an aid to a human searcher where the combined efforts of
both user and machine produce better results than either could achieve indi-
vidually. Most applications of information retrieval systems require the user to
translate their information need into an unstructured query. Usually great care
is taken to make this as easy as possible by making the system more robust
towards suboptimal query formulation, for example by using query expansion
techniques.

Especially when collections are large, the guidance that an IR system can
provide is crucial for efficiently searching the collection. All contemporary IR
systems rank the documents in a collection according to their likelihood of being
relevant towards a query. As such, the user’s task is changed from doing a
random or linear search through the collection into a guided one where the first
documents are the most likely to satisfy the needs. In unstructured collections,
specifically speech collections, even a poor performing speech retrieval system is
likely to be of great help as compared to doing the task manually. The task of
comparing query terms with collection content can usually be done extremely
quickly when compared to the user’s task of judging the relevance of a result.
This makes it common practice to refine a query based on earlier results to
better reflect the information need with respect to the content of the collection
and/or the properties of the retrieval system. As a result, information retrieval
systems are often extremely useful, even when they are far from perfect.
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Figure 2.4: Overview of the information retrieval process. Retrieval results
are used as feedback for the task of converting an information need into a
query.

Figure 2.4 provides an overview of the information retrieval process. On the
left side, a human user is included as part of the system, as it is the user’s task
to create a query based on an abstract information need. There is no universally
correct way of doing this, and the behavior of a system on a given collection
may be cause for refining the original query into something more likely to give
acceptable results.

The information retrieval process itself as shown on the right side of Figure
2.4 can be implemented in various ways, but is universally based on superfi-
cial similarity between query and retrieval unit (typically called documents or
stories). The choice of retrieval unit is what determines the granularity of the
results. When searching through a library of books, one may be initially satis-
fied with a list of potentially relevant books, whereas a further search within a
book may produce chapters, paragraphs, or page numbers as retrieval results.
The granularity of search ideally depends on a user need: in order to quickly
get an answer to a specific question, one wants smaller grains than when look-
ing in a general way for information on a subject. In practice, the granularity
is often dictated by the collection: searching the internet brings one to spe-
cific articles/pages rather than to an entire site, and a search through scientific
publications will typically result in links to individual articles. In order for a
collection to be automatically searchable, it must be i. in a computer readable
representation, i.e., plain text, XML, speech transcription lattices, etc., and ii.
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divided into natural retrieval units, i.e., chapters, paragraphs, pages, sentences,
utterances, etc.

2.2.2 Cranfield and IR Evaluation

The information retrieval system as described in the previous section includes
a human user. This adds some complication to the issue of evaluating the effec-
tiveness of an IR system, as this not only depends on the automatic component,
but also on the user who continually refines their queries. It could be argued
that since the task of the automatic system is to aid a user in the process, it is
the improvement in search effectiveness for the user that should be scrutinized.
Doing a user-driven full evaluation leads to huge impracticalities in i. finding
enough representative users, ii. costs from paying these users, and iii. that it
would lead to huge delays in evaluation which may diminish the possibility to
quickly make iterative improvements through parameter tuning. Evaluation of
IR systems is therefore done only on the automatic steps, with queries as static
information needs, and based on a user-generated ground truth.

Scientific investigation into information retrieval started with the so-called
Cranfield experiments [Cleverdon and Keen, 1966] in the 1960s by Cyril Clever-
don. The evaluation method that was developed at that time is still the basis
for evaluation in all major information retrieval benchmarks such as Text RE-
treival Conference5 (TREC), Cross Language Evaluation Initiative6 (CLEF)
and NII Test Collection for IR Systems7 (NTCIR). The method is based on a
simplification of the process and the user needs through three main assumptions
[Voorhees, 2002]. The first assumption is that a relevant document can be iden-
tified through topical similarity, in other words: the relevance of a document
is dependent only on a query and not on the user. The second assumption is
that the relevance of each document towards a query can be determined ob-
jectively and can be used as a ground truth, and the final assumption that
needs to be made is that the ground truth is known and complete. Having
these assumptions match reality seems more easily achievable on the collection
that Cleverdon investigated than on the typical collections found in the current
benchmarks, because of both size and content related issues. However, the his-
tory of TREC evaluations has shown that the results that were achieved when
these assumptions were adopted for modern benchmark evaluation indicated a
relatively stable ranking of systems over a variety of tasks, vindicating their
suitability towards evaluations beyond the Cranfield type collections [Harman
and Voorhees, 2005].

The basis of Cranfield-type evaluation are the metrics precision and recall.
The former is the proportion of documents in a results list that is relevant
towards a query, and the latter equals the proportion of the total number of
relevant documents in the collection that is included in the results. Typically
there is a trade-off between the two: producing all documents in a collection

5http://trec.nist.gov
6http://www.clef-initiative.eu
7http://ntcir.nii.ac.jp
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will result in perfect recall, but probably low precision, whereas producing few
(high-quality) results should give high precision, but low recall. Both of these
measures are set-based and as such not directly suitable for evaluation of ranked
lists.

The measure that is used for the evaluation of ranked lists generated by IR
systems is Average Precision (AP). It is the average of the precision of the sets
which contain the results up to each relevant document. See Equation 2.4, with
M the number of relevant documents in the collection and Rk the collection of
all documents from rank 1 until relevant document k. In IR evaluation typically
multiple queries (around 50) are used, for which the Mean Average Precision
(MAP) is calculated by taking the mean of average precision for each individual
query.

AveragePrecision =
1

M

M∑
k−1

Precision(Rk) (2.4)

The main limitation in the use of MAP is that it is notoriously hard to de-
termine for an ad-hoc collection. The Cranfield assumptions indicate that one
needs to define the relevance of each document in a collection as a function of
each query in the evaluation. Even for modestly sized collections this is quite
a big task, but for the type of collections that are typically the subject of IR
research it is nigh-on impossible, making it necessary to optimize the effective-
ness of time spent on the judgment process. This is done by making judgments
a binary decision on a document’s relevance towards a query, making no dis-
tinction between levels of relevance, and by judging only candidates that were
selected from a pool of results of preliminary retrieval experiments. Such devia-
tions from the original Cranfield experimental configuration have been shown to
have a relatively limited impact on system ranking [Voorhees, 2000, Voorhees,
2002], but cannot change the fact that a lot of time has to be invested to obtain
a sufficient number of relevance judgments.

It is important to observe that MAP cannot be safely interpreted as an ab-
solute performance level. The same system is likely to give very different MAP
depending on the collection and the set of queries that it is applied to. As such,
MAP is mainly useful as a tool for comparing various configurations for optimiz-
ing towards a certain collection and/or information need, or in a benchmarking
context. Alternatives for MAP have been developed, e.g. [Büttcher et al., 2010],
but all of the experiments in this thesis use a traditional approach to IR and
use MAP as a baseline evaluation approach. Section 2.2.5 briefly discusses an
alternative approach to IR and its standard evaluation method, as it pops up
briefly in Chapter 5.

2.2.3 Term Weighting and Okapi/bm25

Most algorithms for determining the relevance of a document for a given query
are based on the calculation of weights. The higher the weight that is assigned
to a document, the more likely it is to be relevant. In practice, most systems
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assume a bag-of-words approach to queries, meaning that each query term is
individually matched with documents and its contribution to the total relevance
is independent of other query terms.

One of the earliest approaches to weighting documents towards a query is
tft,d × idft which stands for the term frequency, i.e., the (normalized) number
of occurrences of a specific query term in a particular document, multiplied
with the inverse document frequency, i.e., (the logarithm of) the inverse of the
proportion of documents in the collection that contain the term. See Equation
2.5, where ct,d is the count of term t in document d, cd is the total term count
in document d, N is the number of documents in the collection, and ct is the
number of documents containing term t. One can calculate a tft,d × idft value
for each query term and document and combine these into a final score per
document using, for example, a vector space approach [Salton et al., 1975].

tft,d × idft =
ct,d
cd
× logN

ct
(2.5)

The family of weighting functions that was introduced with the Okapi system
[Spärck-Jones et al., 2000] is somewhat similar to tft,d × idft in that it has
components that are similar to tf and idf , but differs in the way these are
calculated. The bm25 idf -component is defined as Equation 2.6, and the tf -
component as Equation 2.7, where cD is the average document length over the
entire collection, and k1 and b are two tuning variables.

log
N − ct + 0.5

ct + 0.5
(2.6)

ct,d × (k1 + 1)

ct,d + k1 × (1− b+ b× cd
cD

)
(2.7)

In the standard tft,d × idft weighting, each occurrence of a query term in a
document causes a linear increase in the weight, i.e., a document containing a
query term twice has double the weight of a document containing it once. This
was found to be counter-intuitive as additional occurrences of the same term
do not necessarily make a document more relevant in a linear way. The tuning
parameter k1 is introduced in order to reflect the expected non-linearity of the
contribution of additional term occurrences to the expected relevance. A lower
value of k1 implies a reduced linearity in the relationship: additional occurrences
of the same query term have an increasingly small effect on the weight. The
tuning variable b works in a similar way for document length, where a value of
b that is less than one implies a decreased linearity.

Combining Equation 2.7 and 2.6 and adding a query-term normalization into
the bm25 function results in Equation 2.8, where Q is the number of terms in the
query, and cq the count of term q in the query. The first part of this equation is a
non-linear interpretation of duplicate terms in the query as multiple occurrences
of the same term in a query are not necessarily indicative of a linearly increased
importance of that term for the relevance of documents. In our experiments we
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did not use this additional normalization as our queries contained no duplicate
terms.

bm25 =

Q∑
q=1

(k3 + 1)× cq
k3 + cq

×
ctq,d × (k1 + 1)

ctq,d + k1 × (1− b+ b× cd
cD

)
× log

N − ctq + 0.5

ctq + 0.5

(2.8)
The Okapi/bm25 approach to term-weighting has been used extensively in

the various IR benchmarks and has been shown to provide good results [Spärck-
Jones et al., 2000]. It has parameters whose function is relatively easy to un-
derstand, making this ranking function especially useful for experimentation
purposes.

2.2.4 TREC SDR and the TDT Collections

The Text REtrieval Conference8 (TREC) is an annual event that is designed
to encourage research on text retrieval for realistic applications by providing
large test collections, uniform scoring procedures, and a forum for organizations
interested in comparing results [Voorhees and Harman, 2000b]. As part of this
event, a multitude of evaluation tasks is performed by many labs in the IR
field from all over the world. These tasks are called tracks and although they
typically deal with textual resources, from TREC-6 in 1997 until TREC-9 in
2000 a Spoken Document Retrieval track was included.

The best systems in these TREC SDR tracks uniformly used an automatic
speech recognition system in a dictation type configuration to produce a 1-best
transcript of the speech. A ‘standard’ information retrieval system was used to
perform the ranking of documents. As not all participants would have access
to a state-of-the-art speech recognition system, a baseline automatic transcript
was provided. This way participation would be open to any interested labs,
including those that were primarily interested in retrieval research.

For TREC-6 [Garofolo et al., 1997] a 50 hour collection of broadcast news
stories was used with 47 test topics, with the goal to find a single target story
– a known item retrieval task. The granularity or size of the retrieval units
was much smaller than for typical textual retrieval tasks with an average of 276
words per story over a total of 1451 stories. Word error rates of the various
transcripts ranged between 35 and 40%. The best system retrieved the target
story as the first result for 37 out of 47 topics on a human made reference
transcript, and 36 times on a speech recognition transcript, indicating a very
small impact from speech recognition errors on this task for the top system.

These results were not particularly insightful as the collection was much
smaller than typical textual collections and the task was relatively easy. For the
TREC-7 SDR track [Garofolo et al., 1998] it was therefore decided to use a more
typical ad-hoc retrieval task instead of the known-item task, but the collection
used was still small at 87 hours and 2866 stories, with an average of 269 words

8http://trec.nist.gov
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each, but a median story length of only 94 words. There were 23 topics with an
average of 17 relevant stories per topic. Word Error Rates of ASR transcripts
of this collection were typically between 25 and 35%. The best system achieved
a MAP of .5668 on the reference transcript and .5075 on a speech recognition
transcript. As with TREC-6 it seemed as if the impact of speech recognition
errors on retrieval performance was relatively mild (a little over 10% reduction
in MAP) for the given task, but this collection was also considered too small to
make any definitive judgements.

The TREC-8 SDR track [Garofolo et al., 2000b] adopted the evaluation
method of TREC-7 SDR, but used a more realistically sized collection: TDT-
2 from the Topic Detection and Tracking benchmark [Fiscus and Doddington,
2002]. This collection contained 21754 stories spanning 557 hours of audio from
the Broadcast News domain. 49 topics were developed with a total of ∼1800
relevant documents. Automatic speech recognition resulted in word error rates
ranging between 20 and 30%, whereas for this collection the references were
mainly closed captions and radio transcripts with a 7-15% error rate. The best
system achieved a MAP of .5598 on the reference transcripts and .5539 on the
automatic transcripts. The impact of speech recognition errors was thus reduced
to around 1%, resulting in the SDR problem being famously declared solved for
this type of collection and task. The last TREC-SDR [Garofolo et al., 2000a]
was held at TREC9 and was very similar to TREC-8, using the same corpus with
a different set of 50 topics. Results for the best system were .5268 for reference
and .5194 for ASR transcripts, a further indication that SDR using this type of
collection and this type of task could be considered a solved problem.

The TDT Speech Collections One of the most interesting things to come
out of TREC SDR, apart from the somewhat surprising finding that transcript
noise (errors) have little impact on retrieval performance, is the availability of
a test bed and methodology that can be used for many types of evaluations.
In addition to the TDT-2 collection that was used for TREC-8 and TREC-9
SDR, there is also the TDT-3 collection which is similar but uses more recent
broadcasts and contains some amount of Mandarin Chinese speech.

The size of the TDT-2 [Cieri et al., 1999] and TDT-3 [Graff et al., 1999]
collections seems to enable true information retrieval as opposed to something
akin to word spotting that would occur on smaller collections. In addition, there
is not only a human-generated reference transcript available, but several of the
labs that participated in the TREC SDR benchmarks have released their own
ASR transcript, making for at least seven different automatic transcripts of the
TDT-2 collection being available for research purposes.

Another potentially interesting subject for study in the context of SDR is
the role of story boundaries. The TDT-2 collection has been used to study the
effectiveness of automatic story segmentation in the context of the Topic Detec-
tion and Tracking benchmarks [Fiscus and Doddington, 2002], and both human
and automatically generated segmentations are available. The total number of
IR evaluation queries available for the TDT-2 collection is 99 (49 from TREC-
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8 and 50 from TREC-9), with a total of ∼4000 relevant documents. For the
TDT-3 collection there are two sets of 60 queries with ∼12000 relevant docu-
ments. As such, the TDT-2 and TDT-3 collections provide ample opportunity
for assessing strategies for improving SDR performance. The main downside of
these collections is that they are relatively easy for an ASR system to transcribe
as the speech type is almost exclusively read speech. The same criticism seems
to be true for the IR part, as MAP scores of more than .5 are rarely seen in
the textual tracks of TREC and indicate an especially easy task. The high rel-
ative performance obtained using automatic transcripts also means that there
is little room for improvement on the results that were obtained in 1999 and
2000 on the TDT-2-based SDR tasks. So for the development of novel IR or
SDR approaches with the aim of improving MAP, this collection provides little
research opportunity. For our task of investigating the feasibility of a novel
evaluation approach for ASR transcripts in an SDR context, the collection has
many unique properties whose presence is instrumental in helping us answer our
research questions.

2.2.5 Known Item Retrieval and Mean Reciprocal Rank

Outside of the Cranfield framework, a slightly different task for which evalua-
tions have been set up is known-item retrieval. The main contrast with standard
IR is the explicit assumption that the user is expected to be satisfied with a
single document and has some knowledge of what such a document may con-
tain, but does not necessarily have enough knowledge of the collection to find
it directly. There are several variations on this task, for example, finding out
what the latest movie of a given director is, instructions to the use of a certain
appliance, or general question answering scenarios [Voorhees and Tice, 2000].

Concepts such as precision or recall are less pertinent, as the users are not
expected to look at any documents beyond the first satisfactory item. Eval-
uation in a known item retrieval scenario is therefore typically not done with
MAP, but uses Mean Reciprocal Rank (MRR) [Voorhees, 1999]. The MRR is
calculated using equation 2.9, with N the number of queries considered and r1
the rank of the first (typically only) relevant result.

MRR =
1

N

N∑
n=1

1

r1n
(2.9)

2.2.6 Summary

Automatic information retrieval systems attempt to solve only part of the prob-
lem of matching an information need to a document, as a human is an essential
part of the process. Evaluation of the automatic part of the IR process is com-
plicated, as establishing a ground truth reference requires a large investment
of time. Some of the techniques that have been successfully used for reducing
the required number of judgments on textual judgements, such as pooling the
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output of several IR systems to make a pre-selection of interesting content, are
potentially less effective for speech content, as transcript errors could penal-
ize certain documents and speech types uniformly for all systems. Obtaining
relevance judgments for a speech collection for which no manual reference tran-
script is available is therefore extremely difficult, and likely to be practically
unfeasible.

The results of the SDR experiments in the context of TREC benchmarks
have shown that speech recognition is not necessarily a bottleneck in the per-
formance of SDR systems for broadcast news. Evaluations have however only
considered the overall quality of the results and not investigated if there may
have been transcript-noise-induced bias in the retrieval results. There is also
still much unknown about the behavior and usability of SDR systems on other
types of collections. Speech retrieval on cultural heritage for example may pose
additional challenges for which novel solutions need to be developed [van der
Werff et al., 2007]. We probably need more variety in the types of queries and
speech collections that are available for research to get a better idea of where
the true challenges lie for this type of IR application.

2.3 Conclusion

Automatic speech recognition and information retrieval are both relatively ma-
ture fields of research with well-established methods for technical implemen-
tation and evaluational approaches. The results of the TREC SDR bench-
marks have shown that for certain types of collection, ASR performance is
‘good enough’ and little can be gained from an SDR point of view by further
reduction of error rates.

Building an SDR system for an arbitrary collection, for example from the cul-
tural heritage domain, has so far proven to be much more problematic than the
results from the TREC SDR benchmarks suggest [Oard et al., 2006]. Word error
rates are typically much higher for non-broadcast news speech and evaluation
or tuning of the IR system is very difficult as relevance judgments for ad-hoc
queries and collections are usually virtually impossible to create. In general,
many of the lessons learned from experimentation in benchmarking conditions
cannot be applied to an environment that is inherently resource-poor.

ASR systems are typically optimized for delivering a 1-best transcript with
the least amount of errors, but information retrieval system may be better
served by an output that is less deterministic and provides the likelihood of
the presence of a terms. Similarly, IR systems, including those used in the
TREC SDR benchmarks, typically treat the collection as a reliable source of
information, thereby discounting the presence of errors in the transcript.

In order to improve SDR performance, it is not enough to simply optimize
ASR and IR in isolation, but one needs to look into ways to adapt the systems
so as to play towards their strengths. Optimizing ASR output for intrinsic qual-
ities (the lowest WER) may not result in an optimal system configuration in
the context of SDR. When implementing an SDR system with known compro-
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mises in performance due to transcript noise or accessibility of source material,
one cannot assume a one-size-fits-all approach and must take care to optimize
each component for the particular demands of the expected usage. Extrinsic
evaluation of ASR transcripts can provide better guidance as to the demands of
the application and enable the creation of an integrated system for SDR, rather
than a simple concatenation of solutions from separate fields of research.



3
Automatic Story Segmentation

The task of a spoken document retrieval system is to rank fragments in a speech
collection for their relevance toward an information need expressed as a query.
Two requirements must be met for a collection to be searchable: i. it must be
in a computer-readable representation, and ii. it must be divided into natural
retrieval units. In the case of SDR, the former is typically solved using an
automatic speech recognition system which converts audio into text, but the
latter requires some additional effort as speech recognition transcripts lack a
suitable division into retrieval units. The typical textual clues for content-based
(story) breaks, such as chapters, sections, and paragraphs are not found in basic
speech transcripts. Given the fact that many of the collections that are potential
targets for SDR can be hundreds or even thousands of hours long, this means
there is a need for an automatic approach to segmenting speech transcripts into
coherent stories.

In the TREC1 IR benchmarks – which have proven highly influential when
it comes to evaluation of IR systems – the search task is carried out on a large
collection of individual stories. A story is defined as a cohesive segment (mostly
of news) that includes two or more declarative clauses about a single event. A
topic is a user need statement which is a more elaborately worded version of a
query. For example topic number 76 from the TREC-8 SDR track: ‘List docu-
ments pertaining to the bombing of the World Trade Center in New York and to
the trial and conviction of Ramzi Ahmed Yousef and other alleged conspirators’,
can be translated into the query: ‘bombing World Trade Center New York trial
conviction Ramzi Ahmed Yousef conspirators’. The basic task is to match topic
descriptions (or queries) to individual stories. One of the fundamental assump-
tions in traditional TREC-style IR is that all textual content can be approached
as a collection of stories and that a user need can be served by a subset of that
collection, and be defined by a topic or query. Because TREC-style IR is such a
well researched subject, SDR has also been approached in this manner [Garofolo
et al., 2000b].

What constitutes a natural retrieval unit depends on the collection and the
information need. For some collections it may be reasonably easy to identify
‘stories’, e.g., Broadcast News (BN) may be divided into separate news events

1http://trec.nist.gov
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rather straightforwardly, but for 1+ hour radio shows this could be more dif-
ficult. Spoken content, especially spontaneous speech, due to its very nature
can be quite unstructured, making it difficult to determine where a conversa-
tional topic begins and ends. Besides this inherent lack of structure, automatic
speech transcripts do not contain any of the structural cues one would expect in
textual content, such as chapters, paragraphs or sentences. Since most current
solutions for automatic speech recognition do not explicitly address the issue
of story boundaries, it must be dealt with in a post-processing step. All se-
rious attempts at automatic story segmentation so far can be classified under
two distinct categories [Manning, 1998]: statistical information extraction and
exploiting lexical cohesion. Sections 3.1.1 and 3.1.2 provide more information
on approaches in each of these categories and how they may be implemented.

Within the context of the TDT benchmarks [Wayne, 2000], the most suc-
cessful approaches to automatic segmentation of speech transcripts have used
statistically motivated methods. Systems were trained on large amounts of
manually segmented speech from the same domain as the target collection. It is
unclear how well segmentation models that were trained on BN perform on non-
BN speech transcripts, but given the typical dependence on certain indicator-
phrases, such as ‘this is CNN,’ or ‘signing off,’ they are unlikely to be particularly
suitable for collections from most other sources and domains. For spoken con-
tent, many of the collections that are manually segmented are from the BN
domain. However, many collections that are seen as candidate content for SDR
are rather dissimilar to BN, e.g., interview collections, non-news radio broad-
casts, and historical audio collections.

Our research interest in this chapter is in the feasibility of automatic segmen-
tation of speech transcripts for the purpose of SDR. We focus on lexical cohesion-
based techniques as such methods are expected to be more widely applicable
in non-BN scenarios. Five algorithms are compared: three established ap-
proaches (duration-based segmentation, TextTiling, C99) and two novel meth-
ods (WordNet-based and Query-specific Dynamic Segmentation Algorithm). An
important difference with earlier research into this subject is that performance
was evaluated both intrinsically using a segmentation cost-function, i.e., by com-
paring the absolute positions of the generated boundaries with a human-made
ground truth, and extrinsically using MAP, i.e., through a full SDR evaluation,
comparing retrieval performance using indexes built on the automatic and the
ground truth boundaries. The research questions that we intend to answer are:

• Does extrinsic rather than intrinsic evaluation of artificial story boundaries
lead to different conclusions with regards to the best choice of segmenta-
tion method?

• Which is the best method for automatic story segmentation without using
additional resources in the context of SDR, based on extrinsic evaluation?

• What is the impact of artificial story boundaries on retrieval performance
of an SDR system when compared to a reference segmentation?
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The rest of this Chapter is organized as follows: Section 3.1 provides a
brief overview of earlier approaches to segmentation, which is followed by a
description of the segmentation methods we used in our experiments in Section
3.2. Sections 3.3 and 3.4 describe the design of our experiments and their results.
A conclusion and discussion is provided in Section 3.5. The work in this chapter
was published earlier in [van der Werff, 2010].

3.1 Previous Work

Automatic segmentation of textual data into topically cohesive units is used
for several applications, for example automatic summarization [Barzilay and
Elhadad, 1997], and information retrieval [Dharanipragada et al., 1999]. Story
segmentation for spoken document retrieval can be defined as dividing an audio
stream into coherent segments which are suitable for retrieval purposes. In
the case of a broadcast news speech corpus for example, stories are typically
complete and cohesive news reports on a particular topic. As this is a natural
segmentation that is inherently present in such broadcasts, such a task is well-
defined; BN-type stories have topic shifts that are relatively coarse-grained, i.e.,
one can go from a nuclear disaster to a financial crisis from one story to the next.
When dealing with collections that contain spontaneous speech or interviews it
may be much more difficult to determine what ‘natural boundaries’ are. Often,
the best segmentation depends on the information need and on the nature of the
collection. Whether a segmentation is ‘correct’ is therefore task dependent, but
usually evaluation is done intrinsically or task-independent, i.e., by comparing
automatically generated boundaries to manually defined boundaries, without
taking the expected use into consideration. Most of the approaches that have
been developed and studied in the past have focused on a well-defined task for
which stories were relatively easy to define, and the aim of the system was to
find these natural segments as accurately as possible.

3.1.1 Statistical Approaches in TDT

The Topic Detection and Tracking2 (TDT) program which was part of the
DARPA Translingual Information Detection, Extraction, and Summarization
(TIDES) project, started in 1997 and had open evaluations every year until
2004. Within this program five tasks were defined: Story Segmentation, Topic
Tracking, Topic Detection, First Story Detection, and Link Detection. The first
of these, story segmentation, was investigated in 1998 on the TDT-2 collection
[Cieri et al., 1999] and 1999 on the TDT-3 collection [Graff et al., 1999].

Several labs created systems for automatic story segmentation. The MITRE
Corporation [Greiff et al., ] built a Bayes classifier using three textual cues:
overlap, start-trigger, and end-trigger, and two audio cues: low energy and
change of energy. Using a collection of manually segmented and transcribed
speech, each of the five cues could be associated with the likelihood of a story

2http://www.itl.nist.gov/iad/mig/tests/tdt/
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boundary occurring. For segmentation the sum of log-probabilities of the five
cues was taken and compared to a threshold to decide on the presence of a
boundary. Training was done on a source-dependent basis, i.e., material from
‘Voice Of America’ resulted in different segmentation models than material from
the ‘American Broadcasting Company’.

IBM created a system that used a combination of decision tree and maxi-
mum entropy models [Franz et al., 1999], with lexical, prosodic, semantic and
structural features as input. The input features for the decision tree were the
duration of non-speech events in the ASR output, the presence of key words and
bigrams, and the distribution of nouns on either side of a proposed boundary.
For the maximum entropy model these were padded with n-gram-based triggers,
and large-scale properties of broadcasts such as time slots for commercials. The
features were trained on a source-dependent basis.

CMU used a system that was based on a maximum entropy framework with
a log-linear model [Carbonell et al., 1999]. Both ‘topicality’ and ‘cue-word’
features were used, the former were constructed based on a minimum diver-
gence criterion with respect to a smoothed trigram default model, the latter
were learned on a source specific basis. Features were learned from all fields
in the speech transcript files, including speaker cluster id, silence duration, and
document source. For each of the sources around 200 features were induced.

All of these statistical approaches used manually segmented speech as train-
ing material to create models. Some features were so collection-specific that us-
ing them on broadcast news material from a different source/network than they
were trained on, would compromise performance. Although these approaches
may have been suitable for the demands of the TDT-2 and TDT-3 segmenta-
tion benchmark task, they are rather impractical for use on non-BN or ‘surprise’
data, due to the typical sparsity of training material for such collections.

3.1.2 Lexical Cohesion-based Approaches

The assumption underlying lexical cohesion-based approaches to automatic story
segmentation is that cohesion between words within a story is higher than be-
tween words from separate stories. By explicitly identifying cohesion, one can
identify places within a text that show relatively little cohesion, indicating a
likely boundary between stories. Cohesion can be identified in several ways,
e.g., repetition, synonymy, and specialization/generalization relations between
words.

The TextTiling [Hearst, 1997] approach to segmenting text attempts to iden-
tify passages or subtopics using paragraphs as its basic units. There is no use
of any kind of discourse cues, only a strict reliance on patterns of lexical co-
occurrence and distribution. This approach is probably best suited to coarse-
grained topic shifts, as it is based on the assumption that (sub)topic change can
be detected through changes in vocabulary. Implementation is by a compari-
son of blocks of equally-sized token sequences around paragraph breaks using a
sliding window approach. This results in a lexical score, which is a normalized
inner product of term frequencies in both blocks, indicating the amount of rep-
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etition in (tokenized) terms. Positions where repetition is low in comparison to
the surrounding blocks are candidate segmentation points. Actual segmentation
is done by smoothing the lexical scores for the candidate segmentation points
and choosing the most likely positions. Performance was shown to be highly
dependent on the material it was used on, with the worst results reported on
text that was ‘chatty’ in nature.

The C99 [Choi, 2000] algorithm uses a cosine measure to determine the
similarity between all (stopped, stemmed, and tokenized) sentence pairs in a
document. These scores can be entered into a matrix with the sentence numbers
along each of the axes. An 11x11 rank mask is then used on this matrix of
similarity values to enhance contrast. Segmentation of the text must take place
on the diagonal of the matrix, after which each segment will itself form a smaller
matrix. For any such matrix a ‘density’ can be computed, representing the ratio
between the sum of similarity ranks and area. Each segmentation will cause the
sum of these densities over all segments (called the ‘inside density’) to increase.
The best segmentation position at any given point in the process is the one
that results in the highest increase in inside density. Segmentation stops when
the increase in inside density drops below a specified threshold. Evaluation was
done on (fragments of) textual documents which were artificially concatenated.
Performance comparisons between several types of ‘random’ segmentation and
TextTiling showed little difference in error rates in this study, whereas the C99
algorithm gave significantly better performance on this task.

The SeLeCT [Stokes et al., 2004] system uses an approach where text is
tagged and morphologically analyzed and normalized. Then WordNet [Fell-
baum, 1998], a large lexical database of interlinked sets of cognitive synonyms,
and ‘a set of statistical word associations’ is used to find relationships between
tokens (nouns, proper nouns, compound nouns, and nominalized adjectives),
which form the basis of the lexical chains. Tokens can form chains based on
cohesive relationships: repetition, synonymy, statistical associations, general-
ization/specialization, and part-whole/whole-part relationships. Boundaries are
hypothesized at points which have a relatively large number of chain beginnings
and endings. The system was tested using paragraphs as the basic unit for a
textual collection and speaker change for speech transcripts. Experiments on
the TDT-1 [Allan et al., 1998] corpus showed that the system performed better
than TextTiling on the speech transcripts, but worse for the textual documents.
By analyzing properties of the collections, it was possible to obtain improved
performance of TextTiling, C99, and SeLeCT through better filtering of verbs
and identification of referential and conjunctive constructs on the speech tran-
scripts of one source. It was concluded that analysis using only patterns of
repetition resulted in the best performance, onto which lexicographic and sta-
tistical relationships between tokens could not improve.

3.1.3 Alternative Approaches to Segmentation for IR

For the most commonly used approaches to IR, explicit story boundaries are
required for efficient indexing and retrieval. However, efficiency (i.e., speed and



38 | Chapter 3 - Automatic Story Segmentation

storage requirements) may not always be a top priority. Many spoken document
collections are relatively small when compared to textual collections and may
only attract a relatively small number of simultaneous users. In those cases,
one may be satisfied with a slower system that requires more data-storage, but
potentially produces higher quality results.

An alternative to the traditional IR approaches that were mentioned in the
previous sections is the use of Hidden Markov Models [Mittendorf and Schuble,
1994] for retrieval. For this approach, boundaries can be generated on-the-
fly. The ranking method had some similarities with language model-based IR
schemes [Hiemstra, 2001], but passages are automatically isolated based on their
match with the query and their contrast with surrounding terms. The entire
collection is assumed to be generated by a three-state HMM, with each state
represented by a language model (LM): an LM of non-relevant (or general) text,
an LM which is based on the query, and finally another LM of non-relevant
text. For this HMM an overall likelihood of the collection is calculated, with
the alignment of states and text that provides the largest contribution to the
overall likelihood is used to segment the collection into three parts. The part
corresponding to the query-LM can then be isolated as a retrieval unit. This
process can be repeated on the remaining parts until the required number of
results is reached.

Another alternative approach to IR is found in a method which selects pas-
sages from large documents based on queries and was described in [Salton et al.,
1993]. It is based on the idea of selecting increasingly smaller sections of the
collection based on some similarity to a query. A text environment/section is
considered relevant and presented to the end-user, only if there is sufficient local
similarity to the query text.

3.2 Story Segmentation for SDR

The segmentation algorithms that were mentioned in the previous section were
all optimized for the task they were tested on. The statistical approaches were
used in the TDT benchmarks because of their ability to capitalize on the pre-
dictability of the collections, the availability of suitable training material, and
their lack of reliance on long(ish) stories. The lexical cohesion-based approaches
on the other hand do not require any collection-specific training material, and
seem to work best for longer stories. They were typically implemented with
somewhat large basic units, i.e., sentences or paragraphs. In all cases, the au-
tomatic segmentation systems were optimized for segmenting a textual stream
into shorter segments in a manner that was most similar to what humans would
do intuitively. The human-made segmentation was used as ground-truth and
systems were evaluated based on their ability to produce boundaries at the same
(or close) positions, typically using a cost-function.

As our interest is in spoken document retrieval, an intrinsic evaluation as
was done in the various approaches mentioned in Section 3.1 may not best rep-
resent our requirements of the segmentation. Instead we compare six automatic
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segmentation methods for their performance in the context of the calculation of
relevance of speech fragments towards TREC-style queries.

For the TREC9 SDR [Voorhees and Harman, 2000a] benchmark, the primary
task was for spoken document retrieval in a story boundaries unknown (SU)
condition. The task was similar to the one from TREC8 SDR [Garofolo et al.,
2000b], i.e, a standard TREC-style IR task on speech transcripts, but this time
without using the provided manual story boundaries. For efficient evaluation,
the participants were required to produce a ranked list of positions into the
collection, which could subsequently be mapped onto the ‘known’ stories and
be scored in the usual manner. This made for a somewhat unusual task, in
that the list of starting points for a user into the collection (as would be typical
for normal textual retrieval, and the TREC8 SDR task), was replaced with a
list of positions that were located somewhere within a coherent section with a
user needing to find a proper starting point on their own account. As long as
the provided positions were anywhere within a relevant section, the results were
counted as correct. Although such a scenario is probably not ideal from a user
perspective, it does make evaluation rather straightforward. For this reason, we
conduct our experiments in a similar manner.

The algorithms we are interested in are: 1. the statistical approach as
implemented by IBM [Franz et al., 1999], 2. a duration-based method that was
used by the most successful labs in TREC-SDR, 3. TextTiling, 4. C99, 5. a
WordNet similarity-score-based segmentation approach of our own design, and
6. a dynamic segmentation method also of our own design. Methods 5 and 6
are novel approaches, at least for this task. For method 1 we use a ready-made
segmentation as provided by IBM, this means that there are no alternative
configurations that can be investigated for this method. The remainder of this
section contains descriptions of the existing methods 2-4, and descriptions of
the novel approaches of methods 5 and 6.

To get a better idea of what such segmentations look like, Figure 3.1 con-
tains a visual interpretation of the results of the various segmentation methods.
The horizontal axis represents a time-line into a half-hour segment from the
TDT-2 collection (specifically the one called 19980201 1130 1200 CNN HDL).
The horizontal blue lines are the segments as they result from the use of the
segmentation algorithms we investigate in our experiments. The segments are
plotted in a staggered manner for improved visual clarity only. The five methods
that are investigated in this chapter are shown, plus the reference segmentation
and segments that resulted from a statistically motivated approach by IBM,
which is included for comparison purposes.

3.2.1 Duration-based segmentation

The rather straightforward duration-based segmentation method was the most
popular with labs that participated in the TREC9 SU SDR task. Of the labs
that created their own boundaries, Limsi [Gauvain et al., 2000] and Cambridge
University [Johnson et al., 2000] were the most successful and they used this
approach.
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Figure 3.1: Story boundaries as generated on the document
19980201 1130 1200 CNN HDL using the methods that are investigated in
our experiments. Staggered plotting is only for visual clarity.

For fixed-duration segmentation, speech or a speech transcript is segmented
into sections based only on their duration (in seconds). A window of a prede-
termined size is overlaid on the transcript and its contents are interpreted as a
segment. Windows can be either adjacent or overlapping, resulting in the possi-
bility of one term being part of multiple segments. If overlapping segments are
indexed in the traditional manner, this may lead to duplicate results in an IR
task. It is therefore important to remove such duplicates in cases where overlap-
ping windows were used for story segmentation. In our experiments we do this
by discarding all results that have any overlap with positions in the collection
that are also covered by a higher ranking result.

One of the most attractive properties of duration-based segmentation is that
it can be applied to speech transcripts without any prior information on lan-
guage, speech type, or structure, such as speaker changes or utterance bound-
aries. The only variables to consider are the duration of the segments and the
amount of overlap of subsequent segments. The optimal setting for segment
duration may be quite dependent on the collection. The TDT-2 collection we
use in our experiments contains mainly news items which are relatively short,
but interview collections for example, may require longer segments for best IR
performance.
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3.2.2 TextTiling and C99

The TextTiling and C99 algorithms were briefly explained in Section 3.1.2. We
use an implementation from the MorphAdorner3 Java libraries for our experi-
ments. When using TextTiling, the likelihood of a story boundary is calculated
for a number of potential candidates that are defined by initial basic units. In
the original TextTiling implementation, paragraphs were chosen as basic units,
as in textual documents it was assumed that story boundaries coincide with
paragraph boundaries. For C99, sentences were originally used as basic units.
Neither paragraph nor sentence boundaries can typically be found in automatic
speech transcripts.

To use TextTiling and C99 on speech transcripts we must provide candi-
date boundary positions, but because they are not included in ASR transcripts,
we cannot use paragraphs or sentence boundaries. There are however two other
basic structural clues that are provided by most ASR systems: utterance bound-
aries and speaker changes, but there is no guarantee these coincide with natural
story boundaries. Typically, utterance boundaries are hypothesized at positions
with low energy, and speaker changes are detected from more complex properties
of the speech frames. Speaker changes may happen at any time during a broad-
cast, and may be indicative of a story boundary when the program is hosted by
two people who take turns in presenting news items, or for interview collections.
On the other hand, it is just as likely that one presenter reads several stories in
succession, which would result in speaker changes being a relatively poor basic
unit. We therefore decided to focus our efforts exclusively on using utterances
as initial basic segmentation units for these two methods.

A potential concern for the use of these methods in an SDR context with the
TDT-2 collection is that the reference stories in this collection were relatively
short at an average of 173 words, and with half the stories less than 86 words
long. Stories in textual collections that are often used in TREC benchmarks
are typically much longer by a factor of 5 or more. It is expected that longer
stories contain more repetitions which is the basis for segmentation by these two
methods. The abundant presence of short stories most likely works against the
effectiveness of the algorithms, so we expect these methods to underperform on
our collection.

3.2.3 WordNet-based Segmentation

WordNet [Fellbaum, 1998] is a lexical database of English, but equivalents are
available in many other languages including most official European languages. In
WordNet, nouns, verbs, adjectives and adverbs are grouped into sets of cognitive
synonyms, each expressing a distinct concept. These sets are then hierarchically
linked to express semantic and lexical relations. The method that is introduced
here uses these hierarchical relationships to generate links between basic units.
Positions in the collection where the similarities between words on either side

3http://morphadorner.northwestern.edu
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are stronger than for the combination of the words on both sides are potential
segmentation points.

Due to the hierarchical nature of the WordNet database, it is possible to
express the distance and relative position of two terms in it as a similarity
score. Out of many methods that have been proposed for this, we choose the
one described by Jiang and Conrath [Jiang and Conrath, 1997] as it uses a
combination of distance and information content similarity. We use the Perl
CPAN module ‘WordNet-Similarity’ for calculating the similarity scores which
ranges from 0 (for no similarity at all) to 1 (for synonyms).

The edge-based (distance) similarity is the sum of the is-a edges in the
hierarchy between the two words that are compared. For the node-based (in-
formation content (IC)) similarity, IC-based weights are used. The concept of
IC in WordNet nodes is inversely related to the probability of encountering an
instance of such a node. The further down in the hierarchy one goes, the higher
its IC as the concept becomes more specific. For example, take a small section
of the WordNet hierarchy which has the node ‘vehicle’ at the top, with both
‘car’ and ‘bike’ as child nodes. The ‘car’ node subsequently has ‘sedan’ and
‘hatchback’ as child nodes. The lowest information content is found in ‘vehicle’
and the highest in ‘sedan’ and ‘hatchback’. The node-based similarity score
between two words is defined as the IC score on the lowest node that contains
both terms, in our example: ‘sedan’ and ‘hatchback’ have a node-based simi-
larity score equal to the IC score of ‘car’, whereas ‘hatchback’ and ‘bike’ have a
score equal to the IC score of ‘vehicle’.

We test whether the similarity measures can be interpreted as a likelihood
of two terms belonging to the same story. If we assume the likelihood of two
terms being part of the same story is equal to the WordNet-based similarity
score, then Equation 3.1 describes the likelihood of any set of terms belonging
to a single story. M is the total number of terms in the set, and p̂sim(l,m)
is the WordNet-based similarity score between the terms at positions l and m
from this set.

p̂story(1, ..,M) =
M−1∏
l=1

M∏
m=l+1

p̂sim(l,m) (3.1)

We use p̂story to calculate, for any potential boundary position, the likelihood
of it being a ‘true’ story boundary. This is determined by the likelihood of all
terms in its left context (the extent of which is determined by a variable n)
being part of a single story, and its right context being part of a single story,
and the likelihood that left and right-side context together do not form a single
story, see Equation 3.2. p̂!story is in this case calculated in a similar manner to
p̂story, except that instead of p̂sim, we use 1− p̂sim.

p̂bound(t) = p̂story(t− n+ 1, .., t)× p̂story(t+ 1, .., t+ n)

×p̂!story(t− n+ 1, .., t+ n) (3.2)
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When calculated over many (all) potential boundary positions, the result is
too noisy to be used directly. We therefore smooth the curve using two moving
average (MA) filters; one for short-term (STA) and one for long-term (LTA)
averages of the data points. For one half-hour speech segment from TDT-2, the
resulting averaged p̂bound scores were plotted as the two curves in Figure 3.2,
where the solid (blue) curve shows the STA values, and the dashed (red) curve
the LTA values. We now hypothesize that story boundaries are most likely
to occur at positions where the STA has the largest value relative to the LTA
and that any story must contain at least one position where the STA is below
the LTA. The number of generated boundaries is controlled by the sizes of the
MA-filters, which along with the context length n are the parameters for this
segmentation method.
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Figure 3.2: Example of MA-filtered versions of the log-likelihood curve for
one 30-minute document from the TDT-2 collection. The solid line repre-
sents the short-term, the dashed line the long term average.

3.2.4 Query-specific Dynamic Segmentation Algorithm

The retrieval task in the TREC8 and TREC9 SDR (SU condition) benchmarks
did not necessarily involve creating story boundaries, since the requirement was
only to generate positions of relevant passages in the collection. Most partici-
pating teams generated explicit story-boundaries using a fixed-duration segmen-
tation, but indexation for IR does not necessarily require a full segmentation.
For example, one could index at the document+position level and determine
story boundaries ad-hoc, during retrieval, based on queries. Although retrieval
in this manner is expected to be much slower than when using a traditional
index, the generally small size of many spoken document collections makes this
approach perfectly feasible for many practical collections.

Our proposal for a Query-based Dynamic Segmentation Algorithm (QDSA)
does not generate a single set of boundaries, but rather creates them on-the-fly,
based on the specific information need that is expressed in a query. Retrieval
units are identified after the query has been posed, and only those parts of the
collection that contain query terms need to be segmented from the rest of the
collection.

The implementation we use in our experiments is (almost) a baseline ap-
proach to such a scheme: if the distance between ‘hits’ (positions in the collec-
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tion where a query-term is found) is smaller than a certain threshold, they are
assumed to originate from a single story. Our basic approach is implemented as
follows: first find all positions in a speech transcript at which a query term oc-
curs, then combine all matching positions which are within a certain minimum
distance of each other to form the retrievable segments (or stories). All stories
generated in this manner must by definition start and end with a query term.

In order to use these segments as stories with a bm25 (see Equation 2.8)
ranking function, we require for each retrievable segment: the count of term t
in story d (ct,d), the number of stories containing term t (ct), the number of
terms in story d (cd), the average story length in the collection (cD), and the
total number of stories in the collection (N). The dynamically generated stories
provide ct,d, ct, and cd, and in our implementation we use the average length of
the newly generated stories for cD, whereas N is obtained by dividing the total
length of the collection by cD.

This baseline approach may not work well when queries are long, or when
multiple, adjacent and distinct stories are all relevant, as there may be a very
large number of occurrences of query-terms in the collection, leading to exces-
sively large stories being generated. The TDT-2 collection that we used for our
experiments intuitively seems relatively suited to this basic approach though.
More advanced clustering techniques may be needed for collections and infor-
mation requests that have multiple distinct relevant stories in close proximity
to each other, but as we have no such collections available for testing, we do not
investigate this further.

In contrast with the other methods, QDSA is done ad-hoc, during retrieval.
As a result, speech transcripts cannot be pre-segmented, changing the demands
made on indexation and adding some processing time to the retrieval task.
This approach may therefore lead to a potentially less efficient system. For the
400-hour TDT-2 collection and for our experiments this did not pose any prac-
tical problems, but in large, real-life settings there may be different limitations
and this technique may be unsuitable for such conditions. The only parameter
needed for the implementation of this method is the minimum distance between
individual segments

3.3 Experimental Setup

The goal of the experiments is to find out whether extrinsic evaluation leads to
different conclusions on the best choice of automatic segmentation algorithm for
SDR, which segmentation method is the most suitable for SDR and collections
with little training material available, and what the impact is of automatic
segmentation on retrieval performance in an SDR context as compared to a
reference segmentation. Extrinsic evaluation is primarily done using (relative)
MAP of retrieval results from experiments using artificial and reference segmen-
tation of the reference transcript of the TDT-2 collection. Intrinsic evaluation
is based on segmentation cost. The experimental setup itself is similar to the
one used in the TREC8 and TREC9 SDR stories unknown (SU) condition, with
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positions in the collection being remapped onto the reference segmentation and
scored in the traditional TREC manner.

3.3.1 Experiments

All experiments were done on the English part of the TDT-2 Broadcast News
speech collection. This collection is neither very recent, nor particularly chal-
lenging from a speech recognition point of view, and the 99 queries for which
qrels were defined are also relatively easy when compared to more recent efforts
in the context of the TREC benchmarks. However, it has a number of properties
which makes it very suitable for comparing various automatic segmentation al-
gorithms in a spoken document retrieval context: i. size, the collection contains
400 hours of speech in more than 21,000 reference stories, providing some chal-
lenge when it comes to separating the relevant from the non-relevant content,
ii. content, the speech is actual broadcast news speech, making its content both
realistic and topically varied, and iii. it has been well researched, because this
collection was used for both the Topic Detection and Tracking benchmark and
for the TREC8 and TREC9 SDR benchmarks, there is a reference transcript and
segmentation as well as a number of automatic transcripts and segmentations
available for comparison purposes.

The fact that the TREC8 and TREC9 SDR tasks on this collection do not
pose as much of a challenge for modern information retrieval systems as some
other IR tasks is not problematic. We are not investigating absolute retrieval
performance, but are more concerned with how MAP is impacted as a result of
alternative story segmentations. A higher initial MAP on a reference segmen-
tation means a relatively large proportion of the relevant stories was found. As
the extrinsic quality of a segmentation is expected to be mostly affected by what
happens around relevant segments, this means that performance is potentially
more affected by alternative segmentations than when a ‘harder’ task were used
for testing.

Retrieval experiments were done using the bm25/Okapi ranking function
which was discussed in Section 2.2.3. This function has been used extensively
in the various TREC campaigns and is well understood. We used a (simpli-
fied) version with two variables: k1 and b. The former was set at 1.1 for all
experiments, whereas the latter was used as a true variable with values rang-
ing from 0 to 1. A value of 0 for b means the bm25 ranking function reduces
to a bm15 ranking function, and a value of 1 implies bm11. For bm25/Okapi,
story boundaries are explicitly used for two purposes: determining token and
document frequency of the query terms, and normalizing the relevance weight
for story length. The amount of length-normalization is controlled with the b
variable. We assume that the length of the automatic segments is suboptimal
if the ‘optimal’ value of b deviates much from the value found for the reference
boundaries. We do not use additional retrieval techniques such as document or
query expansion.

The importance of length normalization for bm25-based retrieval is illus-
trated in Figure 3.3 by the (solid) blue lines. The MAPs of baseline experiments
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Figure 3.3: Reference Boundaries - TREC8 & TREC9 queries. MAP
when using the reference story segmentation (blue), and the same boundaries
mapped to the nearest segment (green, Ref2Seg) or speaker (red, Ref2Spk)
boundary. Experiments on the Limsi2008 ASR transcript. The best results
were 0.4310@b=0.5 for TREC8 and 0.3363@b=0.6 for TREC9 queries.

are shown for values of b between 0 and 1, using the reference story segmentation
on the 2008 Limsi LVCSR transcript of the TDT-2 collection for the TREC8
(top) and TREC9 (bottom) SDR queries.

3.3.2 Potential Complications

The TextTiling, C99, and WordNet-based automatic segmentation methods
need initial basic units for segmentation that are larger than single words. The
results of preliminary experiments on using utterance or speaker turns as initial
basic units are shown in Figure 3.3. We mapped the reference boundaries to
the nearest utterance or speaker turn so as to create an upper limit for per-
formance when using these boundaries as basic units for TextTiling, C99, and
WordNet segmentation methods. The dashed (green) lines show that there is a
significant reduction in performance when segments are forced to correspond to
utterance boundaries, potentially severely limiting performance of these three
methods. As can be concluded from the dotted (red) lines, using speaker turns
as initial basic units results in worse performance. We therefore use utterances
as initial units for our implementations of TextTiling, C99, and WordNet-based
segmentation.

Another potential performance reduction is caused by the fact that a sig-
nificant portion of the TDT-2 transcripts were labeled as non-story content.
Reference stories spanned 389 hours and 3.77M words, whereas the collection
as a whole totaled 559 hours and 5.13M words. As segmentation does not filter
non-important content, and only reference stories can be relevant, an additional
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170 hours of non-relevant content in the collection changes the task somewhat
for the SU condition experiments, reducing performance. To enable a ‘fair’ com-
parison of IR performance, we filter non-story content from the results of our
experiments (marked ‘filtered’ in the tables).

3.3.3 Segmentation Cost

Our primary extrinsic evaluation method was MAP, which is described in Sec-
tion 2.2.2. In addition, we also calculated the segmentation cost (Cseg) for the
best performing configurations of each segmentation method. This gives an in-
trinsic evaluation of the accuracy of the generated boundaries. It is calculated
using Equation 3.3, where Cmiss and Cfa are the cost of a miss or false-alarm,
pmiss and pfa the probability of missing a reference boundary or falsely provid-
ing one, and pseg the a-priory segmentation probability. We used Cmiss = 10,
Cfa = 1, and pseg = 0.1, following [Fiscus and Doddington, 2002], penalizing
‘misses’ much more than ‘false-alarms’.

Cseg = Cmiss × pmiss × pseg + Cfa × pfa × (1− pseg) (3.3)

3.4 Results

3.4.1 Statistically Motivated IBM Segmentation

As part of the TDT benchmark, participating labs were required to automat-
ically segment transcripts from the TDT-2 broadcast news speech collection.
As the task in the TDT benchmark was to do topic detection and tracking,
rather than information retrieval, the evaluation of segmentation was done in-
trinsically using a cost function. As there was ample training material available,
most labs used statistically motivated methods for segmentation. We briefly an-
alyze the IBM segmentation as we see this as a typical example of the expected
performance of statistically motivated segmentation.

The results are shown in Table 3.1. This segmentation produces a higher
number of stories than the reference (#segs column), which is only partly ex-
plained by the larger amount of speech that was was segmented (5.13M vs 3.77M
words). The average story length (#terms column) is much lower, as is the stan-
dard deviation in story length. Removing non-story segments from IR results,
improves MAP, as expected.

3.4.2 Fixed Duration Segmentation

We investigate fixed duration segmentation using non-overlapping and 50%
overlapping segments. In the latter case duplicates were (automatically) re-
moved from the ranked result list. For the TREC8 queries, the results for
non-overlapping segments are shown in Figure 3.4. The x-axis shows segment
size, with the various settings for b on the y-axis. MAP is clearly lower for
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b MAP Cseg #segs #terms (sd)
TREC8 Reference 0.5 0.4310 21754 173.4 (195.7)

IBM 0.4 0.2958 0.64 43090 101.9 (123.2)
filtered 0.4 0.3296

TREC9 Reference 0.6 0.3363 21754 173.4 (195.7)
IBM 0.3 0.2438 0.64 43090 101.9 (123.2)

filtered 0.3 0.2611

Table 3.1: Retrieval results and statistics for the IBM statistically motivated
segmentation.

small segment sizes, but seems to stabilize at a duration which is similar to the
average duration of reference segments. The value of b seems uncritical. The
optimal duration of the non-overlapping fixed duration segments is 70 seconds,
with an optimal value for b at (a low) 0.1, indicating that segment length showed
a reduced correlation with relevance when compared to the reference segmen-
tation. This was not surprising given the fact that the segment duration (in
seconds) was fixed so the segment length (in words) was determined only by the
average speaking rate. The average segment length for 70 second segments was
178 words, which is comparable to the reference segmentation at 173 words, but
the standard deviation was 41, which is considerably less than the 196 words of
the reference.
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Figure 3.4: Fixed duration non-overlapping segments - TREC8 queries.
MAP of IR using segments with fixed duration. The highest MAP was
achieved using 70 seconds and bm25/b = 0.1, resulting in 0.3250 MAP.

Figure 3.5 shows the retrieval results for the TREC9 queries. As with the
TREC8 queries, b is uncritical, but optimal at a rather low value of 0.2. For
this set of queries the optimal duration is only 50 seconds. Both 60 and 70
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Figure 3.5: Fixed duration non-overlapping segments - TREC9 queries.
MAP of IR using segments with fixed duration. The highest MAP was
achieved using 50 seconds and bm25/b = 0.2, resulting in 0.2649 MAP.

second segments show a rather large drop in performance compared to 50 and
80 seconds, something which is most likely caused by the results on one or
more queries being significantly negatively affected by this segmentation, caus-
ing some relevant segments to be split, and consequently scored lower than they
would otherwise be.

To reduce the likelihood of particularly ‘unfortunate’ segmentations, one
can generate stories with some overlap. Figures 3.6 and 3.7 are the equivalents
of Figures 3.4 and 3.5 but with 50% overlapping segments. With this overlap,
performance increases to 0.3313 MAP for the TREC8 queries, still at 70 seconds
duration, but for the TREC9 queries, the unexpected trough at 60 and 70
seconds from Figure 3.5 has disappeared, and 70 seconds is now also the optimal
duration. Although the absolute gain as compared to the non-overlapping 50
second segments is only 0.0032 MAP, the gain compared to the non-overlapping
70 second segments is a more worthwhile 0.0208 MAP.

Table 3.2 contains an overview of the results and statistics on the number
of segments, and average segment length and standard deviation for fixed du-
ration segmentation at the duration and b settings that had the highest MAP.
Performance is better than the IBM segmentation for MAP, but Cseg is much
higher (=worse) for fixed-duration segmentation.

3.4.3 TextTiling

The TextTiling automatic story segmentation algorithm takes two parameters:
sliding window size and step size. The former controls the amount of context
that is considered and the latter influences the size of the segments that are
produced. Figures 3.8 and 3.9 show the results for the TREC8 and TREC9
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Figure 3.6: Fixed duration overlapping segments - TREC8 queries. MAP
of IR using segments with fixed duration and 50% overlap. The highest MAP
was achieved using 70 seconds and bm25/b = 0.3, resulting in 0.3313 MAP.
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Figure 3.7: Fixed duration overlapping segments - TREC9 queries. MAP
of IR using segments with fixed duration and 50% overlap. The highest MAP
was achieved using 70 seconds and bm25/b = 0.2, resulting in 0.2681 MAP.

queries of IR experiments using the TextTiling segments that were produced
with a sliding window size of 10, 20, and 30 words, and a step size of 30, 40, and
50 words (xx and yy respectively in the xx/yy markings on the x-axis). The
ideal value for the step size (segment size) parameter is nearly the same for the
two query sets; the optimal setting for one set costs around 0.01 MAP on the
other queries. For reasonable settings of the TextTiling parameters, b seems
uncritical. The best performance for TREC8 queries is found using a setting of
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b MAP Cseg #segs #terms (sd)
TREC8 Reference 0.5 0.4310 21754 173.4 (195.7)

No overlap 70sec 0.1 0.3250 1.50 28740 178.4 (41.5)
filtered 0.8 0.3525 1.48

50% overlap 70sec 0.3 0.3313 1.29 57109 178.1 (42.4)
filtered 1.0 0.3616 1.28

TREC9 Reference 0.6 0.3363 21754 173.4 (195.7)
No overlap 50sec 0.2 0.2649 1.42 39887 128.5 (30.3)

filtered 0.3 0.2830 1.40
50% overlap 70sec 0.2 0.2681 1.29 57109 178.1 (42.4)

filtered 0.4 0.2845 1.28

Table 3.2: Retrieval results and statistics for fixed duration segmentation
at optimal settings.

30 for both parameters, resulting in a MAP of 0.3388, slightly higher than the
best result found using fixed duration segments. For the TREC9 queries, the
best performance was achieved at a sliding window size of 40 words and a step
size of 30, resulting in a MAP of 0.2639, slightly lower than using fixed-duration
segments.

10/10
10/50  20/10

20/50  30/10
30/50  40/10

40/50

0

0.2

0.4

0.6

0.8

1

0.24

0.28

0.32

TextTiling Parameters b

M
A

P
 

Figure 3.8: TextTiling - TREC8 queries - Unstopped. MAP of IR using
TextTiling segments, parameters: window/step size. The highest MAP was
achieved at 30/30 and bm25/b = 0.4, resulting in 0.3388 MAP.

TextTiling segments documents based on repetition of terms. The common
implementation is to filter stop words before doing TextTiling as stop words may
show as much repetition between stories as within stories. Figures 3.10 and 3.11
show the retrieval results for the same circumstances as Figures 3.8 and 3.9, but
this time applied to the transcripts with stop words removed beforehand. The
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Figure 3.9: TextTiling - TREC9 queries - Unstopped. MAP of IR using
TextTiling segments, parameters: window/step size. The highest MAP was
achieved at 40/30 and bm25/b = 0.3, resulting in 0.2639 MAP.

optimal value of the parameters is slightly lower, which was expected as stop
words were removed from the transcripts and the same settings produced a
lower number of segments in the case of stopped transcripts. The MAP at the
optimal settings however, is almost identical to when TextTiling was applied
to the unstopped transcripts. The presence of stop words in the transcript was
therefore found not to impact the performance of TextTiling from a retrieval
perspective.

10/10
10/50  20/10

20/50  30/10
30/50  40/10

40/50

0

0.2

0.4

0.6

0.8

1

0.24

0.28

0.32

TextTiling Parameters b

M
A

P
 

Figure 3.10: TextTiling - TREC8 queries - Stopwords removed. MAP of
IR using TextTiling segments, parameters: window/step size. The highest
MAP was achieved at 30/20 and bm25/b = 0.3, resulting in 0.3385 MAP.
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Figure 3.11: TextTiling - TREC9 queries - Stopwords removed. MAP of
IR using TextTiling segments, parameters: window/step size. The highest
MAP was achieved at 20/10 and bm25/b = 0.3, resulting in 0.2606 MAP.

Table 3.3 contains an overview of the results and statistics on the number
of segments, and average segment length and standard deviation for TextTil-
ing segmentation at the parameter and bm25/b settings that resulted in the
highest MAP. Since the TextTiling algorithm requires an initial segmentation,
the maximum performance is somewhat limited by the quality of this initial
segmentation. The lines labeled ‘Ref2Seg’ indicate a segmentation where the
reference boundaries are mapped to the nearest utterance boundary and gives
an upper limit to what can be expected from segmentation that uses these ut-
terances as basic segmentation units. Segmentation cost of these boundaries
is 0.53. In spite of this limitation, the TextTiling algorithm managed to out-
perform the fixed-duration segmentation and the IBM boundaries. Perhaps
performance can be further improved through the use of better initial segments,
which may require some tuning of the LVCSR system. We did not pursue this
in our experiments as this is mainly an ASR optimization issue. Segmentation
cost of TextTiling is, depending on the settings used, comparable to that of
fixed-duration segmentation.

3.4.4 C99

The C99 segmentation algorithm requires only the mask size as a parame-
ter. The number of generated segments follows from the properties of the
text/transcript, so this does not need to be controlled. In practice this method
generated less boundaries than the TextTiling approach or the reference seg-
mentation, with around 9k segments for a mask size of 5, and around 12k for a
mask size of 17 and up.

Performance of C99 for the TREC8 and TREC9 queries is shown in Figures
3.12 and 3.13 when used on a stemmed transcript. Applying the algorithm on
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b MAP Cseg #segs #terms (sd)
TREC8 Reference 0.5 0.4310 21754 173.4 (195.7)

Ref2Seg 0.4 0.4081 0.53 20690 194.9 (209.2)
Unstopped 30/30 0.4 0.3388 1.32 26903 194.2 (164.3)

filtered 0.3 0.3656 1.32
Stopped 30/20 0.3 0.3385 1.31 13876 369.9 (160.1)

filtered 0.3 0.3641 1.29
TREC9 Reference 0.6 0.3363 21754 173.4 (195.7)

Ref2Seg 0.5 0.3005 0.53 20690 194.9 (209.2)
Unstopped 40/30 0.3 0.2639 1.29 26203 198.2 (139.1)

filtered 0.3 0.2805 1.28
Stopped 20/10 0.3 0.2606 1.16 37217 141.6 (156.2)

filtered 0.3 0.2761 1.16

Table 3.3: Retrieval results and statistics for TextTiling segmentation at
optimal settings.
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Figure 3.12: C99 - TREC8 queries - Unstopped. MAP of IR using C99
segments. The highest MAP was achieved at a mask size of 37 and bm25/b =
0.4, resulting in 0.2720 MAP.

a version of the stemmed transcript with stop words removed results in slightly
better performance, see Figures 3.14 and 3.15. At their respective optimal set-
tings, C99 performance is worse than TextTiling, worse than using (overlapping)
fixed size segments, and worse than the IBM segmentation.

Table 3.4 contains an overview of the results and statistics on the number of
segments, and average segment length and standard deviation for C99 segmen-
tation at the mask size and b settings that resulted in the highest MAP. The C99
segmentation algorithm clearly under-segmented the transcripts, with average
segment lengths of more than double those of the reference segmentation.
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Figure 3.13: C99 - TREC9 queries - Unstopped. MAP of IR using C99
segments. The highest MAP was achieved at a mask size of 35 and bm25/b =
0.5, resulting in 0.2095 MAP.
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Figure 3.14: C99 - TREC8 queries - Stopwords removed. MAP of IR
using C99 segments. The highest MAP was achieved at a mask size of 33
and bm25/b = 0.3, resulting in 0.2736 MAP.

3.4.5 WordNet-based Segmentation

Our WordNet-based segmentation algorithm uses the amount of context and the
sizes of two moving-average filters as parameters. The latter are used to control
the amount of segments that are generated. The results of IR experiments using
several values for these parameters are shown in Figures 3.16 and 3.17. On the
x-axis, the numbers indicate settings for the three parameters: context size/ma
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Figure 3.15: C99 - TREC9 queries - Stopwords removed. MAP of IR
using C99 segments. The highest MAP was achieved at a mask size of 31
and bm25/b = 0.6, resulting in 0.2178 MAP.

b MAP Cseg #segs #terms (sd)
TREC8 Reference 0.5 0.4310 21754 173.4 (195.7)

Ref2Seg 0.4 0.4081 0.53 20690 194.9 (209.2)
Unstopped 37 0.4 0.2720 1.40 12440 412.2 (370.3)

filtered 0.4 0.2917 1.34
Stopped 33 0.3 0.2736 1.35 12182 420.9 (343.5)

filtered 0.4 0.2926 1.29
TREC9 Reference 0.6 0.3363 21754 173.4 (195.7)

Ref2Seg 0.5 0.3005 0.53 20690 194.9 (209.2)
Unstopped 35 0.5 0.2095 1.40 12416 413.0 (372.3)

filtered 0.5 0.2250 1.34
Stopped 31 0.6 0.2178 1.35 12209 420.0 (340.6)

filtered 0.6 0.2346 1.29

Table 3.4: Retrieval results and statistics for C99 segmentation at optimal
settings.

filter 1/ma filter 2.

No clear pattern emerges as to the optimal setting of the context param-
eter (the x-axes in the figures), suggesting that the resulting boundaries may
be more or less random from an IR point of view. Filter settings that result
in a higher number of stories generally also result in higher MAP, but perfor-
mance remains below TextTiling and also below fixed-duration segmentation.
WordNet-based segmentation results in higher MAP than C99 and the IBM
segmentation though. The WordNet-based automatic segmentation method we
evaluated in these experiments shows little promise for use in spoken document
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Figure 3.16: WordNet - TREC8 queries. MAP of IR using WordNet-based
segments. The highest MAP was achieved using a context of 5 words, with
MA-filters of 1 and 20 samples, and bm25/b = 0.2, resulting in 0.3109 MAP.
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Figure 3.17: WordNet - TREC9 queries. MAP of IR using WordNet-based
segments. The highest MAP was achieved using a context of 25 words, with
MA-filters of 1 and 20 samples, and bm25/b = 0.4, resulting in 0.2425 MAP.

retrieval, as its implementation is relatively complicated due to the need for
using WordNet, and the need to optimize three parameters that don’t seem to
converge in an obvious manner. Table 3.5 has more details on results at the
optimized settings for the WordNet-based segmentation algorithm.



58 | Chapter 3 - Automatic Story Segmentation

b MAP Cseg #segs #terms (sd)
TREC8 Reference 0.5 0.4310 21754 173.4 (195.7)

5/1/20 0.2 0.3109 1.47 25376 199.0 (152.0)
filtered 0.2 0.3330 1.47

TREC9 Reference 0.6 0.3363 21754 173.4 (195.7)
25/1/20 0.4 0.2425 1.49 19988 252.6 (171.0)

filtered 0.4 0.2557 1.49

Table 3.5: Retrieval results and statistics for WordNet-based segmentation
at optimal settings.

3.4.6 Dynamic Segmentation (QDSA)

For our proposal for a dynamic segmentation of speech transcripts, the main
tunable parameter is the minimum distance between individual stories: all seg-
ments that contain query-terms that have less than this specified distance be-
tween them are grouped together. Another parameter for this algorithm is the
query itself, which is what makes this a dynamic segmentation algorithm. Fig-
ures 3.18 and 3.19 show the results of retrieval experiments with various settings
for the distance parameter.

The QDSA results in the highest MAP of all the methods we tried in our
experiments, even though the resulting (average) segment length is clearly not
very accurate as can be seen from the large drop in performance from using
values for b of more than 0.1. For a setting of bm25/b = 0 (which is effectively
bm15), QDSA gives similar performance as the reference segmentation at the
same setting of b. Comparing like-for-like, by filtering out all segments which are
not in the reference segmentation, so for which there is no relevance judgement
available, and for a bm15 ranking algorithm, the QDSA method resulted in a
MAP of 0.3758 for TREC8, and 0.2744 for TREC9, compared with the reference
segmentation at 0.3791 and 0.2807 respectively. We therefore conclude that the
inclusion of non-story segments and incorrect estimation of segment length are
the main reasons for the performance difference between QDSA and manual
segmentation in the context of our experiments.

In Table 3.6 the results for the optimal settings of QDSA are shown. The
‘#segs’ column shows the average number of segments generated for each topic,
hence the difference between TREC8 and TREC9 queries for the same 30 second
setting of the distance parameter. As it happens, the TREC9 queries tend to
result in longer segments, indicating that the query terms in those queries more
often occur within a 30 second radius from each other. Segmentation cost cannot
be easily calculated for this method, as the segmentation is different for each
query.
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Figure 3.18: QDSA - TREC8 queries. MAP of IR using QDSA segmenta-
tion. The highest MAP was achieved using a distance setting of 30 seconds
and bm25/b = 0.1, resulting in 0.3590 MAP.
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Figure 3.19: QDSA - TREC9 queries. MAP of IR using QDSA segmenta-
tion. The highest MAP was achieved using a distance setting of 30 seconds
and bm25/b = 0.1, resulting in 0.2777 MAP.

3.5 Conclusion

The aim of the experiments in this chapter was to determine whether artificial
story boundaries for SDR should be evaluated intrinsically or extrinsically, which
method should be used when making an SDR system, and how much retrieval
performance is affected by the use of artificial boundaries. We answered these
questions by comparing several automatic methods of story segmentation to a
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b MAP #segs #terms (sd)
TREC8 Reference 0.5 0.4310 21754 173.4 (195.7)

30sec 0.1 0.3590 5473 26.3 (68.2)
filtered 0.1 0.3902

TREC9 Reference 0.6 0.3363 21754 173.4 (195.7)
30sec 0.1 0.2777 6983 45.8 (107.6)

filtered 0.1 0.2959

Table 3.6: Retrieval results and statistics for QDSA segmentation at opti-
mal settings.

reference segmentation on a fairly large (400h) collection of speech. Only the
statistically motivated IBM segmentation required manually labeled training
material, all others relied exclusively on properties that were present in the
transcript itself. All segmentations were, where possible, evaluated intrinsically
using Cseg, and extrinsically using a bm25-based IR system and MAP.

Our results show that intrinsic evaluation provides very little information
about the usefulness of the segmentation in the context of spoken document
retrieval. We therefore conclude that for the segmentation methods that were
investigated in this chapter, a cost function is not a suitable target when opti-
mizing segmentation of ASR transcripts for use in SDR.

The worst performing of the methods we investigated were C99 and the
WordNet-based method. The former performed much worse than the rest,
which is possibly because this method tended to under segment, and we had no
method to control the number of segments that were produced. The WordNet-
based method also performed worse than the best systems, but was not very
far behind. With some further optimization, for example by using a different
WordNet similarity measure, and some additional tweaks to parameter settings,
or by using better initial segmentation units, it may be possible to increase per-
formance of this method. We did not investigate this any further as we felt
the baseline performance that we obtained using this method did not warrant
a large amount of additional effort in optimization.

Out of all the segmentation methods we investigated in this chapter, the
dynamically generated boundaries of QDSA resulted in the highest MAP. When
story length was ignored, thereby effectively retrieving using bm15 rather than
bm25 ranking, the best QDSA configuration was equivalent in MAP to the
reference segmentation. If story length is included, QDSA still performs better
than the other methods, but is inferior to the reference segmentation. The
main drawback of QDSA is that story segmentation must be done on-the-fly,
as it is specific for the information request. As such, its implementation is
likely to remain much less computationally efficient, and makes it difficult to use
traditional indexing methods. This downside may be manageable on many SDR
collections and applications, but may be severely limiting for others. Another
potential downside is that the method may not work as well on other collections
and information requests due to the simplicity of the approach in clustering
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query terms into stories. Because of the high performance we obtained, there
was little reason to investigate this issue further on the TDT-2 collection.

We were somewhat surprised by the fact that fixed duration segmentation
and TextTiling resulted in such similar retrieval performance. Both scored only
slightly behind QDSA, but could be implemented in a relatively straightfor-
ward and efficient manner. TextTiling my be preferred not only for its IR
performance, but also because it may be easier to improve upon by using better
initial segments. The fixed-duration segmentation is extremely easy to imple-
ment, and when overlapping segments are used, it provides performance that is
relatively robust with fewer parameters to optimize. For example, comparing
Figures 3.6 and 3.8 shows that performance as a function of segment size and
b using fixed duration segmentation is relatively predictable. In conclusion, the
fixed duration segmentation with overlapping segments is a good choice for au-
tomatic segmentation for SDR, but TextTiling may have slightly more potential
when some improvements on initial segments can be made.

3.5.1 Research Questions

Does extrinsic rather than intrinsic evaluation of artificial story boundaries lead
to different conclusions with regards to the best choice of segmentation method?
Answer: Yes. Intrinsic evaluation indicated that the best automatic segmen-
tation that we investigated was produced by the statistically motivated IBM
system, whereas MAP of retrieval using these segments was the worst except
for C99 segmentation. For QDSA, Cseg could not be calculated, but this method
resulted in the highest MAP of all tested automatic segmentations. For most
methods, the optimal parameter settings for MAP did not coincide with mini-
mization of Cseg making the intrinsic evaluation also unsuitable for parameter
optimization for story segmentation for SDR.

Which is the best method for automatic story segmentation without using addi-
tional resources in the context of SDR, based on extrinsic evaluation?
Answer: The highest MAP was achieved using QDSA. However, our collection
may have been especially suitable for this method due to the shortness of the
reference segments and the expected high contrast between adjacent segments.
TextTiling and fixed duration segmentation resulted in similar IR performance,
but TextTiling performance may have been limited by the use of utterances
as initial segments. The fact that the utterances we used were based only on
silences in the speech, means that it may be possible to improve TextTiling
performance by using more advanced utterance boundary detection techniques
at the ASR level. This makes TextTiling our preferred method when QDSA is
unpractical due to collection size or other properties of the collection not favor-
ing the simple clustering approach we used.

What is the impact of artificial story boundaries on retrieval performance of
an SDR system when compared to a reference segmentation?
Answer: The effect of using artificial story boundaries, as generated using the
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methods that we investigated in this chapter, on MAP is relatively severe. The
best system (QDSA) resulted in a relative reduction in MAP of ∼ 10%, and the
second-best system (TextTiling) in a reduction of ∼ 15%. The worst system we
tested resulted in a reduction in MAP of ∼ 33%.

3.5.2 Summary

Information retrieval requires that a collection is in a computer readable (typi-
cally textual) form, and that it is divided into ‘natural’ retrieval units, typically
coherent stories. For most textual collections these requirements are easily met,
as individual stories are often marked as chapters or paragraphs. In the case
of spoken document retrieval, raw speech samples are typically converted into
text by an ASR system, but the resulting transcripts rarely contain clues on
story boundaries. We therefore need to segment ASR transcripts into coherent
stories in order to be able to index them for IR.

In this chapter we have investigated generating artificial story boundaries
(segments) in an SDR context. We have shown that intrinsic evaluation of
automatic segmentation does not correlate well with extrinsic evaluation: the
method that resulted in the lowest (=best) Cseg, also resulted in a low (=bad)
MAP when used in retrieval experiments. Ideally a segmentation would score
well on both, as this means the boundaries are similar to the references and also
good for retrieval purposes. The former is mainly important for presentational
purposes, as a system that presents only complete and coherent fragments as
results is expected to be preferable for a user to one that provides a ‘random’
position somewhere within each fragment. On the other hand, user preferences
may depend on many other factors that we could not take into account in our
investigations, so we did not include this as a parameter in our experiments.
As we focused on ‘core’ performance, we felt that extrinsic evaluation was the
better choice for automatic story segmentation for SDR.

Out of the automatic segmentation methods that we tested, the best (ex-
trinsic) performance was achieved using the QDSA (dynamic) segmentation al-
gorithm. The main downside of this approach is that it makes indexing (much)
less efficient, at least in our implementation. For SDR on large collections with
many users this may become a real bottleneck and make the use of this method
unfeasible. It is also unclear how well this approach would work on collections
that are less well suited to the particulars of the algorithm. As a general rec-
ommendation, it is therefore probably better to use either TextTiling or fixed
duration segmentation, where the former may be especially beneficial for per-
formance when there is an initial segmentation, for example in utterances, that
coincides well with true story boundaries.



4
Speech Transcript Evaluation

In this chapter various methods for the evaluation of automatic speech tran-
scripts for use in the context of spoken document retrieval are investigated.
Whereas traditional speech transcript evaluation is typically performed in a
dictation-type context with a focus on counting errors that need correction, in
the context of SDR the focus should be on the consequences of transcript errors
on the search results.

Spoken document retrieval is usually implemented as a customized informa-
tion retrieval engine on the output of a Large Vocabulary Continuous Speech
Recognition (LVCSR) system. Due to various practical and theoretical limita-
tions, ASR inevitably comes with transcript noise that may compromise retrieval
performance. The typical challenge for dictation-type ASR applications is mini-
mizing the number of errors given a certain speed target, hence evaluation using
word error rate, see Equation 2.1. When using such transcripts in an SDR con-
text, ASR errors may result in a retrieval bias, especially when errors occur
for query terms. As it is not possible when using only WER to differentiate
between the words on which the errors occur. As WER is based on a simple
count of errors, it may not be adequate for detecting performance issues that
are dependent on the role of words in a retrieval context.

The work in this chapter is motivated by the need for measuring retrieval
bias that is caused by transcript noise. Whereas WER is an intrinsic evalua-
tion metric for ASR transcripts, a TREC-style approach to IR evaluation using
MAP provides an extrinsic measure of transcript quality. However, MAP is not
very practical for ASR transcript evaluation due to its dependence on qrels (see
Section 2.2.2), and has also been shown to be relatively robust towards tran-
script errors [Garofolo et al., 2000b]. We therefore need an alternative approach
to extrinsic evaluation of speech transcripts that does not require qrels, but
provides the same information as can be learned from using (relative) MAP.

The quality of an ASR transcript is often strongly correlated with properties
of the speech, such as its type (spontaneous, rehearsed), its acoustic proper-
ties (noisy or clean conditions), and its similarity to the acoustic models, and
somewhat with its content through linguistic models. An optimal configuration
for broadcast news transcription is unlikely to perform as well on spontaneous
conversational speech. Various parameters, such as the choice of acoustic and
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linguistic models, their relative weights, penalties related to word length, and
word insertion penalties can all be adjusted to fit the task. The optimal values
for these parameters are set based on the outcome of an evaluation. For dicta-
tion applications, WER may be a suitable target, but a transcript for use in a
search application may benefit from a different optimization, for example one
that favors information carrying content over filler words.

Evaluating a literal orthographic transcript when it is used in SDR is po-
tentially suboptimal because the IR process itself does not use this literal tran-
script, but operates on the result of an indexation process: a process which
typically includes removing stop-words (highly frequent terms with low infor-
mational content), and applying a stemmer such as a Porter stemmer [Porter,
1980]. Furthermore, indexation usually treats a collection as bags-of-words and
the IR ranking algorithm may process word frequency in a non-linear manner
[Spärck-Jones et al., 2000]. Ranking stories for expected relevance implies a
comparison between stories in a collection, making not just the properties of a
story, but also its properties in comparison to other stories the basis for retrieval.
Evaluation of an ASR transcript based on a simple word-for-word comparison
therefore potentially misses many aspects which are of great importance to re-
trieval performance, while simultaneously overemphasizing aspects which can
be safely ignored.

In this chapter we investigate several alternatives to WER and MAP for the
evaluation of automatic transcripts in an SDR context. These methods include
weighted error rates, and rank correlation and overlap-based measures on IR re-
sults. A distinction is made between intrinsic and extrinsic approaches to ASR
transcript evaluation. Our aim is to establish methods for extrinsic evaluation
that show a high correlation with relative MAP, but without requiring qrels.
In addition, we investigate intrinsic approaches that are a potential alternative
for WER and may be used if for any reason extrinsic approaches provide un-
satisfactory results, or cannot be applied for practical reasons. The research
questions that we intend to answer are:

• Can we evaluate ASR transcripts in an intrinsic manner that is more
appropriate for SDR than traditional WER?

• Which method for extrinsic evaluation has the highest correlation with
relative MAP?

• Can extrinsic evaluation of ASR transcripts without qrels be reliably used
to predict relative MAP?

This chapter is organized as follows: Section 4.1 provides an overview of ear-
lier work on transcript evaluation in the context of spoken document retrieval,
after which Section 4.2 introduces the methods we tested in our experiments.
Section 4.3 describes the experimental setup for our investigation into the cor-
relation between our ASR-for-SDR methods and MAP, the results of which are
given in Section 4.4. Finally, Section 4.5 provides a conclusion and explicit an-
swers to our research questions. Most of the work in this chapter was published
in [van der Werff and Heeren, 2007] and [van der Werff et al., 2011].
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4.1 Previous Work

One of the earliest formal large-scale investigations into SDR was done for
TREC7 SDR [Garofolo et al., 1998], which was a spoken document retrieval
benchmark held in the context of the Text REtrieval Conference (TREC) of
1998. Several tasks were defined, including retrieval on a reference transcript,
retrieval on self-produced ASR transcripts, and retrieval on ASR transcripts
from other participants. Story boundaries were provided by the organization
and evaluation of SDR was done in the same manner as most other TREC tasks,
using primarily MAP [Voorhees and Harman, 1998].

For TREC7 SDR, a high correlation (0.87) was found between the ranking
of systems based on WER and MAP, indicating that intrinsic and extrinsic
evaluation resulted in a similar ranking of systems. Recognizing that this may
have been coincidental given the procedures used, several alternative ASR for
SDR evaluation methods were investigated. i. (Story) Term Error Rate (TER)
is similar to WER but is calculated as the sum of the difference in term counts
for each story divided by the total term count of the collection. It does not
require an explicit word-level alignment, and a substitution error is counted as
an insertion plus a deletion. ii. Stemmed and Stop Word Filtered WER is
similar to WER but calculated after the removal of stop words and stemming
of all remaining terms, and iii. Named Entity WER is similar to WER but
calculated after the removal of all non named entities from the transcripts.
Only the latter seemed to result in a slightly better correlation with MAP than
WER (0.91), whereas the other measures gave results similar to WER (∼0.85).

In subsequent editions of the TREC SDR benchmarks [Garofolo et al., 2000b]
the size of the collection and the number of topics was greatly increased. Cross-
system results indicated that performance was only minimally impacted by er-
rors in the automatic transcripts. The average reduction of MAP for each
additional percent WER was 0.0016, for systems with WER ranging from 13 to
30%. As MAP of an IR task performed on a reference transcript was very close
to one on the best of the ASR outputs, the task of SDR on English language
broadcast news speech was declared solved [Garofolo et al., 2000b].

In [Singhal and Pereira, 1999] the relative impact of transcript noise on SDR
performance was investigated, where multiple types of errors were recognized.
Three types of error were defined: i. the term count was different but not zero in
both reference and ASR transcript, ii. the term count was zero in the reference
but not in the ASR transcript, and iii. the term count was zero in the ASR
transcript but not in the reference. The least impact could be attributed to
errors of type i, where only the count of terms was changed but not their binary
presence. The complete deletion of a term from a document (type iii) mostly
impacted long queries, whereas the insertion of a term that was not present
in the speech (type ii) was most detrimental for retrieval using short queries.
These results showed that the impact of errors not only depends on the content
of the collection but also on the properties of the queries.

The Indicator Error Rate (IER) [Macherey et al., 2003] combined the find-
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ings on error types [Singhal and Pereira, 1999] with TER [Garofolo et al., 1998].
It is a variation on TER where both ASR and reference transcripts are first
stopped and stemmed, but instead of ‘real’ counts, binary presence is used.
Their experiments showed that correlation between IER and MAP was poten-
tially higher than for WER or TER, but results were inconclusive due to the
limited number of data points.

WER, TER, and IER are discussed in more detail in Section 4.2.1.

4.2 Evaluating ASR

The entire process of spoken document retrieval can be broken down into a
number of large and small tasks. Figure 4.1 shows the typical steps in an SDR
system. Not all SDR systems operate in exactly this manner, but typically
a 1-best transcript is story segmented, stopped/stemmed, and then enters the
indexation process. Figure 4.1 is intended to clarify the different stages in the
SDR process at which ASR evaluation can be performed.
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Figure 4.1: Overview of the steps an ASR transcript takes through an SDR
system and potential evaluation points.

Traditional approaches such as WER and TER operate directly on the 1-
best transcript or are calculated after stopping/stemming, see Section 4.2.1. The
RIA approach [van der Werff and Heeren, 2007] that we proposed, see Section
4.2.2 includes the indexation process into the evaluation, and the Correlation
and Overlap (C+O)-based methods that are discussed in Sections 4.2.3 and
4.2.4 use the results of the IR process for evaluation. This Section provides an
overview of the various methods for ASR transcript evaluation that we test for
correlation with MAP in our experiments.
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4.2.1 Word, Term, and Indicator Error Rate

As explained earlier, the evaluation of 1-best literal transcripts is most com-
monly done using Word Error Rate (WER), see Equation 4.1. The number of
substitutions, insertions and deletions (S, I and D) are determined through a
dynamic programming, minimum Levenshtein distance function alignment of
reference and hypothesis transcript [Levenshtein, 1966]. This is normalized for
the number of words in the reference (N). A literal, human generated, reference
transcript is used as ground truth. A word is erroneous if its superficial form
differs from the reference, regardless of meaning or nature of the error. In cer-
tain cases, such as numbers, capitalization, or compound words, normalization
may need to be applied to get the desired assessment of performance.

WER =
S + I +D

N
× 100% (4.1)

The most frequent type of error in WER-optimized ASR systems is the
substitution error. Substitutions are effectively the same as a deletion (of the
correct word) and an insertion (of the wrong word), which for WER calculation
are counted as single errors, as they are the logical consequence of a one ‘mistake’
in the transcription process. Indexation for IR typically ignores word order
and only registers term counts for each segment or document. With positional
information removed, insertions and deletions that were counted as substitution
errors are no different from any other error, so there is little reason to count
substitution as a single error. When an automatic transcript is used for SDR,
it is typically subject to post-processing, such as stop word removal, stemming,
and story segmentation. If we assume that any error that has no impact on an
index, has no impact on the performance of an SDR system, it makes sense to
evaluate ASR quality after all pre-processing has been done.

Term Error Rate (TER) [Garofolo et al., 1998] is a suitable alternative to
WER for evaluation of bags-of-words, see Equation 4.2. The count of term w in
document d is represented by Aw,d and Bw,d for the reference and ASR-based
transcript respectively. TER can often be approximated from WER by doubling
the value for substitutions, making TER highly correlated with WER. Explicitly
optimizing for TER may reduce correlation with WER, but may also result in
improved performance in the context of SDR. For example, not producing any
words at positions with low ASR confidence scores, may increase precision of
search results and reduce TER, but is likely to lead to an increased WER.

TER =

∑
d

∑
w|Aw,d −Bw,d|

N
× 100% (4.2)

A method that is closely related to TER, is the Indicator Error Rate [Macherey
et al., 2003] which is calculated in a similar manner to TER, see Equation 4.3.
Instead of term counts, only binary presence (BPA and BPB) is used and in-
stead of the total term count in the documents, the number of unique terms
is used (Nu). This approach is potentially interesting for SDR applications as
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a change in binary presence affects retrieval performance more than a simple
change in term count [Singhal and Pereira, 1999].

IER =

∑
d

∑
w|BPAw,d −BPBw,d|

Nu
× 100% (4.3)

4.2.2 Relevance-based Index Accuracy

Evaluation of ASR transcripts is mostly done in order to enable the optimiza-
tion of the many variables and parameters of an LVCSR system. The goal is to
produce the best, or rather most useful, results. But what is best or most useful
is not always closest to the reference in a linear manner. Most IR systems calcu-
late the contribution to the relevance of a story for a query from the frequency
of (query) terms in the story. The manner in which this so-called ‘relevance
weight’ is calculated is one of the defining aspects of an IR system. Typically,
the relevance weight is related to the term count in a non-linear manner. This
non-linearity is ignored when using TER and potentially overemphasized when
using IER, but it can be captured accurately using the Relevance-based Index
Accuracy (RIA) [van der Werff and Heeren, 2007].

One of the most popular approaches to relevance weight calculation is Okapi
/bm25 [Spärck-Jones et al., 2000], which we discussed in Section 2.2.3 and can be
calculated using Equation 2.8. All terms receive a document and term-specific
weight which depends both on the number of occurrences within a document
(term frequency) and on the number of documents in the entire collection in
which they occur (document frequency). The non-linear interpretation of word
counts is implemented using tuning variable k1. If we assume queries with
no duplicate terms, the first part of Equation 2.8 can be omitted, resulting in
Equation 4.4.

bm25 =

Q∑
q=1

ctq,d × (k1 + 1)

ctq,d + k1 × (1− b+ b× cd
cD

)
× log

N − ctq + 0.5

ctq + 0.5
(4.4)

In contrast to TER and IER, RIA calculates the similarity between refer-
ence and ASR transcript not from the counts of terms and documents, but from
the weights which determine the contribution to the expected relevance of a
story segment for each term. As bm25-based retrieval operates with a simple
sum of contributions of each query term, this can be implemented in a fairly
straightforward manner. When using the simplified version of bm25 from Equa-
tion 4.4, contributions of each term to the overall relevance of a document for
a query containing this term, are independent of the other terms in the query,
and can be pre-calculated for a closed collection. For a given value of b and
k1, we can efficiently calculate bm25-weights from only the term counts and
collection-wide statistics. As relevance weights are independent of queries, they
result in intrinsic evaluation of ASR transcripts.

Comparing the weights between an index based on a reference transcript
and one based on an ASR transcript can be done with the Vector Space Model
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(VSM) [Salton et al., 1975]. We define N as the total number of unique terms
in the collection, including both the automatic transcript and a ground-truth
manual reference. A (sparse) vector representation of the collection can then
be made which has a size which is equal to N times the number of documents
(or stories) in the collection, where each entry wn,d is equal to the bm25-weight
of term n in document d. Using the VSM, we calculate the angle between two
vectors and use its cosine as a measure for similarity between the two, which
we call Relevance-based Index Accuracy. It is calculated using Equation 4.5 (a

standard VSM calculation), where
−→
R and

−→
A are the bm25-weight-based vectors

made from reference and automatic transcript respectively.

RIA =

−→
R ·
−→
A

‖
−→
R‖ × ‖

−→
A‖

=

∑D
d=1

∑N
n=1Rwn,d ×Awn,d√∑D

d=1

∑N
n=1R

2
wn,d
×
√∑D

d=1

∑N
n=1A

2
wn,d

(4.5)

The main difference between TER and RIA is that the latter doesn’t treat
all errors equally and more severely penalizes an error that is made on more
distinctive terms, something that should not be confused with term importance.
Typically terms that are very frequent have low relevance-weights, and errors
on such terms result in small changes to those weights, and therefore have less
of an impact on RIA.

4.2.3 Rank Correlation of Retrieval Results

Our main criticism of WER in an SDR context is that it may not properly
acknowledge the importance of errors. Although TER, IER, and RIA aim to
improve this by calculating error rates based on word counts or similarity in
term weights, they still amount to intrinsic evaluation where the actual use of
the system is not part of the evaluation process. Effectively, when using these
methods, the quality of the transcript is assumed to be independent of the needs
of users.

In practice, term weights cannot be assumed to be representative of the
importance of a term, i.e., a spelling error is likely to be very distinctive for a
document, resulting in a high weight, but from a retrieval point of view, such
anomalies are rarely of any importance. In fact, term weights are meaningless
unless the term plays a role in the retrieval process, and then only in a relative
sense when compared to the weights of other terms or of the same term in other
documents. It is therefore impossible to determine the quality of a transcript
for an IR task, without specifying this task.

Extrinsic evaluation is standard practice for information retrieval, for exam-
ple using MAP (see Section 2.2.2). With extrinsic evaluation the exact use is
part of the evaluation, and in IR this is accomplished by evaluating the quality
of a ranked result list of a set of representative information needs. We propose
to use a similar approach for evaluation of ASR in the context of SDR. However,
instead of using relevance judgements (qrels) as the ground truth, we use the
results from a retrieval run on a reference transcript directly. Our approach is
best illustrated by Figure 1.3 from Section 1.3.2.
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Using rank correlation measures, we can determine the similarity in ranking
between two lists containing (the same) documents, typically resulting in a value
of 1 for identical lists, 0 for uncorrelated lists, and -1 for lists which are inversely
ordered. If two IR tasks are performed in the same manner on almost identical
systems, which differ only in their use of a reference or automatic transcript as
basis for the indexation, then the differences between the ranked results must
be the caused by transcript errors from the ASR process. We therefore expect
a comparison between these results to adequately characterize the quality of an
ASR transcript in an SDR context.

It is important to realize that one does not need to know the absolute per-
formance of systems to be able to characterize the difference between them.
In our approach, we take the retrieval results on a reference transcript as the
gold standard, even though it is very unlikely that these are ‘perfect’ (MAP=1)
from a retrieval perspective. In the case of ASR transcript evaluation in an
SDR context, one can usually safely assume that performance on a reference
transcript is better than on a noisy ASR transcript. On the other hand, it is
possible that segments of speech with poor acoustic properties are also less often
relevant than clean studio-produced speech. In such cases, the noisy segments
are likely to be ranked lower due to ASR errors, which may result in better IR
performance. A noisy automatic transcript may therefore sometimes result in
better performance than a human-made reference. In general however, we do
not consider noisy transcripts to be desirable in an SDR context.

The most commonly used methods of rank correlation are Kendall’s τ and
Spearman’s ρ [Kendall, 1938], which are designed for comparing lists that are
identical except for the ranks of their contents. The ranked results from IR
are typically limited to the top-n segments, meaning that the results for IR
on different representations of the same collection are likely to only overlap
partially. This poses some challenges for the implementation, but with a small
modification of the calculation one can get a reasonable estimate anyway.

We alter our results lists in the same spirit as was proposed in [Fagin et al.,
2003]. We make the assumption that any document which is contained in one of
the two lists, but not the other is actually (invisibly) present at position N + 1,
with N the number of elements in the original list. By doing this we obtain two
lists which contain the same elements but with a different ordering. We also
obtain two lists with potential ties at position N + 1, which needs to be dealt
with separately for each of the rank correlation measures we use.

Kendall’s τ Using Equation 4.6 we can calculate Kendall’s τ , with nc the
number of concordant pairs (pairs which are in the same order in both lists),
and n the number of elements in each list. As tied ranks are neither concordant
nor discordant, and following [Fagin et al., 2003], we adapted the counting of
concordance by increasing nc by 0.5 for tied ranks.

τ =
4× nc
n(n− 1)

− 1 (4.6)
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Spearman’s ρ For Spearman’s ρ, see Equation 4.7, absolute rank numbers are
used rather than concordance. Ties are therefore not problematic, but absolute
ranks are important. Our extended lists contain potentially many entries at
position n + 1, which is a rather optimistic estimate of their true ranks. We
resolve this by assigning the average position to all elements tied for one rank.
For example, when one list has 5 elements not present in the other, these would
initially all be assigned rank n+ 1. Averaging their position gives each of them
a rank of n+ 3.

ρ =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
∑
i(yi − y)2

(4.7)

A potential concern with the use of τ and ρ for rank correlation of ranked
result lists from IR runs, is that all positions are treated as equally important.
If two documents were swapped for position at the top end of the list, this is
not counted any different than a swap at the bottom end of the list. Since IR
experiments are typically evaluated for 1000 results, but users rarely ever look
this far down the list, there is the potential for too much emphasis being put on
the order of documents which are never actually inspected and whose positions
have no bearing on subjective quality of the system. We therefore also inves-
tigated two alternative rank correlation methods which place more importance
on the top end of the result list.

Average Precision inspired τ With Equation 4.8 we can calculate τAP
[Yilmaz et al., 2008], where Ci is the number of items above rank i in one list
that are correctly ranked with respect to the item at rank i in the other list. It
is easy to see how, similar to Average Precision, a correlation is calculated at
each position and this value is finally averaged. It is similar to Kendall’s τ in
that it uses concordance for calculating rank correlation.

τap =
1

n− 1

n∑
i=2

(
Ci
i− 1

)− 1 (4.8)

Blest’s ω One can calculate Blest’s ω [Blest, 2000] using Equation 4.9, where
qi is the rank in the other list of the item at rank i. Blest’s ω is somewhat similar
to Spearman’s ρ in that it uses the distance between the ranks of the same
document for calculating rank correlation, but just like τAP rank differences at
the top end of the list are emphasized over those at the tail end.

ρB =
2n+ 1

n− 1
− 12

n(n+ 1)2(n− 1)

n∑
i=1

(n+ 1− i)2qi (4.9)

4.2.4 Overlap of Retrieval Results

Average Overlap As an alternative to rank correlation, Average Overlap
(AO) [Wu and Crestani, 2003] can be used to compare lists purely for their
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content. The overlap between two sets of documents is a measure for similarity,
but overlap, as precision in IR, is a set-based measure. Just as with AP however,
it can be expanded to work for ranking, see Equation 4.10, where k is the depth
of the evaluation and |A:d ∩ B:d| the number of elements that are present in
both lists up to depth d.

AverageOverlap =
1

k

k∑
d=1

|A:d ∩B:d|
d

(4.10)

One of the potential advantages of AO over correlation-based measures is
that there is no underlying assumption of both results lists containing the same
documents. For the correlation-based methods, the resulting value falls in a
range of -1 to 1, but the numbers are not always easy to interpret. For example, if
the same n documents appear in both top-n lists, one could say that this implies
a reasonable similarity, especially for n < 1000 and a collection containing 20k+
documents. However, if these are in uncorrelated order or inverse order, the
correlation coefficient will be 0 or less, but it is unclear how this then relates
to the similarity of the result lists. A rank correlation of 0 may in this case
indicate a higher initial similarity than a positive correlation. Average Overlap
gives a value between 0 and 1, where 0 means the two lists are disjoint, and 1
means they are identical both in content and ordering. Because AO operates in
a similar manner to MAP, it puts more emphasis on the top end of the results
lists in the same way as is the case for MAP, increasing the chances of finding
a high correlation between AO and MAP.

Rank-Biased Overlap An alternative to AO was developed in Rank-Biased
Overlap (RBO) [Webber et al., 2010]. This introduces a variable p that can be
used to control the amount of bias that is given to the top end of the result list.
RBO is calculated using Equation 4.11, where p = 0 means only the topmost
result is considered and p = 1 means that the evaluation becomes arbitrarily
deep.

RBO = (1− p)
∞∑
d=1

pd−1
|A:d ∩B:d|

d
(4.11)

With AO it is possible for the results in the tail to dominate those at the top,
making it unclear whether the resulting number is truly representative of the
differences in ranks or a side-effect of the chosen evaluation depth. This is not
the case with RBO as the combination of evaluation depth and p determines the
maximum achievable RBO value, which is 1 for an infinitely deep evaluation.
This maximum can be found using Equation 4.12. For example, with p = 0.95
and an evaluation depth of 1000, the RBOmax=1.000, but with a depth of
100, RBOmax is reduced to 0.9991 (the remaining 0.0009 is an uncertainty,
reserved for results at ranks 101+). For most practical values of p, the typical
IR evaluation on 1000 results should be sufficient to get an accurate RBO value.

RBOmax = 1− pk − k(1− p)
p

(
k∑
d=1

pd

d
+ ln(1− p)

)
(4.12)
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4.3 Experimental Setup

The goal of the experiments is to find answers to the research questions that
were stated in the introduction of this chapter. These are to i. determine how
we can intrinsically evaluate ASR transcripts in a manner that better reflects
the demands in an SDR context than WER, ii. establish which of our proposed
methods provides the best correlation with MAP for transcript noise and story
segmentation errors, and iii. find out whether extrinsic evaluations that do not
use qrels can be reliably used to predict relative MAP. We do this by testing
the various methods for ASR evaluation that were explained in Section 4.2
for their correlation with the relative retrieval performance of an IR system
using the automatic transcripts. We look at two aspects of correlation: i. how
similar is the ranking of the various transcripts based on these measures to
the ranking according to MAP, and ii. can we use the values we obtain from
these measures to predict the degradation in MAP score as a result of transcript
noise. The former can be established using a rank correlation, the latter using
the linear correlation between true relative MAP and its estimation from each
of the measures.

We use MAP as our target measure because it was used extensively for
the TREC8 and TREC9 SDR benchmarks, and is a de facto standard for IR
evaluation in TREC benchmarking. As there are 99 queries and corresponding
qrels available for the TDT-2 English language broadcast news speech collection,
calculation of MAP was relatively straightforward (unlike for typical ad hoc
retrieval tasks). Our choice for MAP does not mean that we feel it is necessarily
the best or only way of measuring the impact on IR of the types of noise we
found in our transcripts. We also do not believe that the best ASR-for-SDR
measure is necessarily the one that has the highest correlation with MAP. We do
follow the commonly held belief that MAP is a reasonable way of estimating IR
performance, and that a poor (linear or rank) correlation with MAP indicates
that a measure is targeting something different and may therefore be unsuitable
as a replacement for relative MAP, regardless of its overall merit in the context
of ASR for SDR evaluation.

In our experiments we recognize two distinct types of noise which result
from the ASR and subsequent indexation process: transcript errors and story
segmentation errors. We investigate how well the proposed methods are able to
capture the impact of either of these types of noise on MAP.

4.3.1 Properties of the Test Collection

As with all of the experiments in this thesis, we used the English language
portion of the TDT-2 broadcast news speech corpus, see Section 2.2.4. We
perform standard IR tasks on this collection using the 99 queries that were
developed by NIST for the TREC8 and TREC9 SDR benchmarks. This section
provides an overview of the properties of this collection and our metadata that
are important for the experiments we perform.
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Transcripts The audio in the TDT-2 corpus was collected in 1998 and 1999.
We have eight different automatic transcripts, seven of which were generated in
2000 in the original benchmark context, and one more recently in 2008. The
latest transcript was done by CNRS-Limsi specifically for our experiments and
represents a current state-of-the-art system for high-speed English language
BN-speech transcription. There is also a full manual reference transcript avail-
able, but this is not up to typical benchmark standards as it consists mostly of
closed captions and therefore may include rephrasings of the speech content. In
addition, there are 10 hours of high quality LDC1 transcripts.

The WER of the closed captions was estimated as ranging from 7.5 to 14.5%
for radio and television sourced material respectively [Garofolo et al., 2000b],
and our best estimate of the WER of the ASR transcripts ranges between 15
and 30%. We expect the ‘errors’ in the closed captions to be mostly deliberate
re-phrasings of the true content, whereas ASR errors are typically of a more
random nature. As all our measures are against the same reference we expect
our measures to overestimate the true number of errors, as the total error we
find is a combination of the errors in the reference and the errors in the ASR
transcript. It is also likely that at some locations the ASR transcript is a
more literal representation of the speech than the closed captions. We do not
expect this to result in overall better retrieval performance for the ASR-based
experiments though. Since the exact impact of noise in the references is difficult
to establish without expending an enormous amount of effort, we shall assume
that the resulting bias is similar for all transcripts and does not need to be dealt
with explicitly.

Analysis of the various automatic transcripts shows that there is a high
overlap in errors made by the LVCSR systems. The eight different automatic
transcripts were produced by four labs/systems: Limsi (3x), Cambridge Univer-
sity (2x), Sheffield University (2x) and NIST (1x). Intra-lab overlap in errors
was around 80%, whereas inter-lab overlap was less at around 65%. A higher
overlap in errors indicates that systems make mostly the same errors, with a
better system simply making less rather than different errors. A high overlap is
likely to reduce the difference between quantitative and qualitative approaches
to ASR-for-SDR evaluation.

Regarding the nature of the errors, more than 60% of all errors were made
on the 50% least frequent terms, and 40% on the 25% least frequent terms,
indicating that less frequent terms were more error-prone. Queries which rely
on less frequent terms are therefore more likely to suffer from ASR transcript
noise than queries that do not. The best performing systems in terms of WER
(Limsi and Cambridge University) had a lower proportion of errors on their
high-frequency terms than the worst performing systems (NIST and Sheffield
University), indicating that the improved performance was mainly due to better
recognition of the more frequent terms.

Before indexation by our IR system, all transcripts were normalized using

1http://www.ldc.upenn.edu
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‘tranfilt’ and the ‘en20010117 hub5.glm’ rules, both available from NIST2 and
previously used in the context of TREC SDR. This normalization includes map-
ping spelling variations to a unified form, splitting certain compound words, and
expanding some commonly used abbreviations.

Baseline experiments using bm25 on the reference transcript and using refer-
ence story boundaries showed that the TREC8 queries resulted in a higher MAP
than the TREC9 queries, at .4601 versus .3432. The combined set of all queries
resulted in an overall MAP of .4011. Topic/query terms showed an error rate
that was significantly lower than average. On the Limsi2008 transcript, TER
for query-terms was 27% whereas all non-stopwords had a TER of 38%. We
therefore conclude that query terms were relatively ‘easy’ terms for the Limsi
ASR system to transcribe.

Story Segmentations For the experiments on relative performance of the
various automatic transcripts we use the reference segmentations which were
used in the TREC8 SDR benchmark. The placement of story boundaries is
typically found to be rather subjective, but assuming a ground truth can be
established, it may be sub-optimal for use in an IR task [Cieri et al., 1999].
In the context of a Topic Detection and Tracking benchmark, boundaries were
intrinsically evaluated, so performance in an IR context was not a target. If story
segmentation were evaluated in an extrinsic manner, using MAP, we may find
that intrinsically well-performing segmentations do not produce good results in
this context. This is illustrated in Chapter 3.

When IR results based on reference boundaries are used as a ground truth,
which is the case in our experiments in this chapter, suboptimal boundaries
may become problematic as boundaries that differ from the reference could in
theory result in improved IR performance. However, we only measure differ-
ences in performance and implicitly assume that any difference is the result of
a performance reduction. Given that the segmentation alternatives that we use
in our experiments in this chapter all resulted in significantly lower MAP than
the reference segmentation, see Chapter 3, we expect this issue to not affect our
conclusions and is therefore not further addressed.

We use story segmentations that were generated for our experiments in
Chapter 3. Fixed duration segmentation is used for nine different durations,
both with and without overlap, and TextTiling for twenty different configura-
tions. Each segmentation is applied to the reference transcript and an IR task is
performed using the 99 TREC8 and TREC9 SDR queries. For each of the three
query sets (TREC8, TREC9, and both) the linear and rank correlation between
the values of the ASR-for-SDR measures and MAP is calculated for all segmen-
tations. A high correlation indicates that the quality of story segmentations in
an SDR context can be established without using qrels.

2http://www.nist.gov
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4.3.2 Evaluation

Both transcript noise and story segmentations lend themselves for evaluation
using the extrinsic measures: Kendall’s τ , τAP , Spearman’s ρ, Blest’s ω, Average
Overlap, and Rank-Biased Overlap. Intrinsic evaluation of transcript noise is
best done using TER, IER, and RIA, whereas segmentation cost is more suitable
for intrinsically measuring the quality of story boundaries.

The segmentation cost (Cseg) is calculated using Equation 4.13. A moving
window of 15 seconds is applied to a text and is scored for missed and inserted
boundaries, resulting in pmiss and pfa. The remaining parameters are set at 1
for the cost of a miss (Cmiss) and the cost of a false-alarm (Cfa), and 0.1 for
pseg, the a priori likelihood of finding a segment boundary.

Cseg = Cmiss × pmiss × pseg + Cfa × pfa × (1− pseg) (4.13)

The experiments are performed using a custom-built search engine which
uses a bm25 ranking function. No query or document expansion techniques
are used, resulting in a somewhat basic absolute level of IR performance, and
making our MAPs significantly lower than what was achieved by the participants
in the TREC SDR benchmarks. We use ‘terse’ queries which do not contain any
stopwords. For some experiments we do not use the reference story boundaries,
however, all qrels are defined for the reference stories. In those cases we produce
a position in the collection, which, in order to enable the normal evaluation
method, is replaced with its corresponding reference story by the ‘UIDmatch.pl’
script. This procedure was also used in TREC SDR. The value of MAP is
calculated with the ‘trec eval 9.0’ program [Garofolo et al., 1997].

To determine the potential for the measures as an alternative for MAP as
ASR-for-SDR measure, we calculate the rank and linear correlation coefficients
between each of the alternative measures and MAP. Traditionally MAP is be-
lieved to be a reliable indicator of relative system performance, hence a primary
goal for any new measure is to do the same. We used τ and ρ to establish how
similarly systems were ranked as compared to MAP, and used Pearson’s r to
establish the linear correlation between our measures and relative MAP. A high
linear correlation indicates that the ASR-for-SDR measures are suitable for pre-
dicting expected relative MAP under these conditions. The limit of significance
is always at p<0.05, and all reported correlations are significant, unless stated
otherwise. Conclusions are primarily based on retrieval experiments using all
99 queries, unless stated otherwise.

4.4 Results

4.4.1 Transcript Noise

Table 4.1 shows the MAPs that were achieved on each of the transcripts of
the TDT-2 collection. Clearly, the TREC8 queries are much easier than the
TREC9 queries, and MAP values of different transcripts are sometimes very
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TREC8 TREC9 All
Reference 0.4601 0.3432 0.4011
Limsi-2008 0.4310 0.3343 0.3822
Limsi-1u 0.4134 0.3179 0.3652
Limsi-2u 0.4211 0.3230 0.3716
CU-htk-s1u 0.4199 0.3221 0.3705
CU-htk-s1p1u 0.4045 0.3069 0.3552
Nist-b1u 0.3960 0.3167 0.3559
Shef-1k 0.3937 0.2975 0.3451
Shef-2k 0.4056 0.2986 0.3516

Table 4.1: MAP of baseline retrieval experiments using ‘TREC8’,
‘TREC9’, or ‘All’ query sets for nine different transcripts of the TDT-2
collection.

close, making transcript ranking based on MAP rather precarious. The highest
MAP was achieved using the reference transcript, followed by the newest Limsi
transcript, both as expected. Third in rank is the Limsi-2u transcript, followed
by CU-htk-s1u and Limsi-1u. The relative performance of Nist-b1u and Shef-2k
depends on which queries are used. We find that there is perfect rank correlation
between MAP resulting from just the TREC9 queries and the combination of
TREC8 and TREC9 queries for these transcripts.

Intrinsic Evaluation For each transcript and each query set we calculated
(stopped and stemmed) TER, (stopped and stemmed) IER, and (stopped and
stemmed) RIA. Table 4.2 shows rank correlation between IR results on ASR
transcripts and the reference, using Kendall’s τ and Spearman’s ρ, indicating
the ability of the three measures to correctly rank the transcripts for their
expected MAP. The ‘TREC8’ and ‘TREC9’ columns show TER, IER, and RIA
used in an extrinsic manner, as they are calculated on only query terms. The
values in the ‘All’ column are for TER, IER, and RIA when used intrinsically,
so when calculated on the full collection.

The ranking based on TREC8 queries is the hardest to predict for TER,
IER, and RIA, perhaps because this ranking also deviates from the ranking
found using all 99 queries. Using stopped and stemmed data results in an
improvement for IER and RIA on the TREC9 queries. If we assume that using
a higher number of queries results in a better ranking of transcript quality in
an SDR context, then the ‘All’ column contains the results that are of the most
interest. When ranking transcripts based on all 99 queries, and calculating TER,
IER, and RIA using all terms in the collection, we find perfect rank correlation
between MAP and the three intrinsic approaches.

Table 4.3 is similar to Table 4.2, but gives Pearson’s linear correlation coeffi-
cient (r), rather than rank correlations. The relatively high correlations indicate
that TER, IER, and RIA provide an accurate prediction of relative MAP. Linear
correlation is highest when MAP is calculated using all 99 queries. Stemming
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TREC8 TREC9 All
τ ρ τ ρ τ ρ

TER 0.7857 0.9048 0.9286 0.9762 1.0000 1.0000
IER 0.7857 0.9048 0.9286 0.9762 1.0000 1.0000
RIA 0.7857 0.9048 0.9286 0.9762 1.0000 1.0000

Stopped and Stemmed
TERst 0.7857 0.9048 0.9286 0.9762 1.0000 1.0000
IERst 0.7857 0.9048 1.0000 1.0000 1.0000 1.0000
RIAst 0.7857 0.9048 1.0000 1.0000 1.0000 1.0000

Table 4.2: Rank correlation of TER, IER, and RIA with MAP. The
‘TREC8’ and ‘TREC9’ columns indicate only queries from those query sets
were used for evaluation, the ‘All’ columns are based on the full collection.

TREC8 TREC9 All
TER 0.9077 0.9215 0.9891
IER 0.8933 0.9642 0.9939
RIA 0.9130 0.9580 0.9951

Stopped and Stemmed
TERst 0.9097 0.9311 0.9915
IERst 0.9029 0.9617 0.9916
RIAst 0.9132 0.9620 0.9980

Table 4.3: Linear correlation of TER, IER, and RIA with MAP. The
TREC8, TREC9, and All columns indicate which terms were used for eval-
uation.

and stopping results in a slightly (not significantly) higher linear correlation
for TER and RIA, but not for IER (except for the TREC8 queries). Of these
methods, RIAst has the highest linear correlation with MAP at 0.9980. We have
only eight transcripts to compare, resulting in relatively large margins of error
on the correlations. As a result, none of the methods can be shown to have a
significantly higher correlation with MAP than any of the others for any query
set.

Extrinsic Evaluation We used the six extrinsic methods that were discussed
in Section 4.2, with three values for the bias control parameter of RBO. Tables
4.4 and 4.5 contain the rank and linear correlation of the extrinsic ASR-for-SDR
measures and MAP-based evaluation.

Table 4.4 shows that Blest’s ω and Average Overlap result in perfect rank
correlation with MAP for the TREC9 queries and the full set of queries, and
have the same rank correlation as IER and RIA for the TREC8 queries. The
other methods typically show one additional swap, or one less in the case of
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TREC8 TREC9 All
τ ρ τ ρ τ ρ

Kendall’s τ 0.7143 0.8810 0.9286 0.9762 0.9286 0.9762
τAP 0.7143 0.8810 0.9286 0.9762 0.9286 0.9762
Spearman’s ρ 0.7143 0.8810 0.9286 0.9762 0.9286 0.9762
Blest’s ω 0.7857 0.9048 1.0000 1.0000 1.0000 1.0000
Average Overlap 0.7857 0.9048 1.0000 1.0000 1.0000 1.0000
RBO0.98 0.7857 0.9048 0.9286 0.9762 0.9286 0.9762
RBO0.95 0.8571 0.9286 0.9286 0.9762 0.9286 0.9762
RBO0.90 0.8571 0.9286 0.9286 0.9762 0.9286 0.9762

Table 4.4: Rank correlation of extrinsic ASR-for-SDR measures with MAP.

TREC8 TREC9 All
Kendall’s τ 0.8621 0.9632 0.9461
τAP 0.8550 0.9595 0.9413
Spearman’s ρ 0.8098 0.9380 0.9014
Blest’s ω 0.8617 0.9447 0.9342
Average Overlap 0.9172 0.9650 0.9808
RBO0.98 0.9514 0.9554 0.9939
RBO0.95 0.9632 0.9481 0.9965
RBO0.90 0.9717 0.9229 0.9911

Table 4.5: Linear correlation of extrinsic ASR-for-SDR measures with
MAP.

RBO0.95 and RBO0.90. Given how close MAPs actually are for these 9 tran-
scripts, we don’t think these small differences in rank correlation are sufficient
for drawing any conclusions on the usefulness of these methods in an ASR-for-
SDR evaluation workflow.

In Table 4.5 we find that the linear correlation between overlap-based meth-
ods and MAP seems higher than for the correlation-based methods, but the dif-
ferences in correlation in this table are only significant for RBO0.95 and RBO0.90

versus τ , τAP , ρ, and ω, and for RBO0.90 versus ρ. The overlap-based methods
are roughly at the same level as the intrinsic methods, whereas the correlation-
based methods are worse (but correlation is still highly significant). Of the ex-
trinsic evaluation measures, RBO0.95 is the most promising for transcript noise,
as it has a high rank correlation and the best linear correlation with MAP of
the tested methods.

4.4.2 Story Segmentation

Fixed Length We first focus on the fixed-length segmentation from Section
3.2.1. Segments with nine different durations using non-overlapping windows
were created on a reference transcript of the TDT-2 collection and the IR tasks
were run on each segmentation. Table 4.6 and Table 4.7 show the rank and
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TREC8 TREC9 All
τ ρ τ ρ τ ρ

Kendall’s τ 0.6667 0.7833 0.6111 0.7333 0.5000 0.6333
τAP 0.6667 0.7833 0.5556 0.6667 0.5556 0.7000
Spearman’s ρ 0.6111 0.7667 0.7222 0.8667 0.5000 0.6333
Blest’s ω 0.6667 0.7833 0.5000 0.6000 0.5556 0.7000
Average Overlap 0.6667 0.7833 0.5000 0.6000 0.5556 0.7000
RBO0.98 0.8333 0.9333 0.5556 0.6667 0.7222 0.8000
RBO0.95 0.4444 0.6000 0.7222 0.8500 0.7778 0.8667
RBO0.90 0.4444 0.6000 0.7778 0.9000 0.6667 0.8000
Cseg 0.6111 0.7500

Table 4.6: Fixed-length/NO: Rank correlation of MAP with extrinsic ASR-
for-SDR evaluation measures.

TREC8 TREC9 All
Kendall’s τ 0.9469 0.8963 0.9661
τAP 0.9538 0.9024 0.9694
Spearman’s ρ 0.8967 0.9104 0.9579
Blest’s ω 0.9634 0.8894 0.9713
Average Overlap 0.9709 0.8999 0.9783
RBO0.98 0.9639 0.9126 0.9818
RBO0.95 0.9517 0.9246 0.9816
RBO0.90 0.9309 0.9324 0.9775
Cseg 0.9508

Table 4.7: Fixed-length/NO: Linear correlation of MAP with extrinsic
ASR-for-SDR evaluation measures.

linear correlation with MAP for the extrinsic evaluation measures using rank
correlation and overlap-based methods. In addition, Cseg is shown for com-
parison purposes as this is the intrinsic method that is traditionally used for
segmentation evaluation.

A comparison between Tables 4.6 and 4.4 shows that ranking systems based
on expected retrieval performance as a result of segment length, is not as suc-
cessful as for ASR transcript noise. For the full set of 99 queries, RBO0.95 has
the highest rank correlation with MAP, although it is lower than any of the rank
correlations for transcript noise, and is also the lowest of all the methods for the
TREC8 queries (but a bias setting of 0.98 gives it the highest rank correlation
for those queries). The segmentation cost has a rank correlation that is similar
to the extrinsic methods.

Despite the somewhat lower rank correlation for fixed duration segmenta-
tion, linear correlation is rather similar to what was found for transcript noise,
see Table 4.7. The differences between Tables 4.5 and 4.7 are not significant for
any of the methods. All extrinsic methods outperform Cseg for linear correla-
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TREC8 TREC9 All
Kendall’s τ 0.9619 0.9364 0.9700
τAP 0.9709 0.9292 0.9673
Spearman’s ρ 0.9226 0.9282 0.9671
Blest’s ω 0.9808 0.9373 0.9692
Average Overlap 0.9842 0.9420 0.9739
RBO0.98 0.9844 0.9376 0.9738
RBO0.95 0.9870 0.9358 0.9724
RBO0.90 0.9872 0.9361 0.9696
Cseg 0.6674

Table 4.8: Fixed-length/O: Linear correlation of MAP with extrinsic ASR-
for-SDR evaluation measures.

tion with MAP, but not significantly. Although none of the tested evaluation
methods is significantly different from any of the others, for fixed-length non-
overlapping segmentation, the highest linear correlation with MAP is achieved
using RBO0.98.

In Chapter 3, the non-overlapping windows approach showed an anomaly
on the TREC9 queries for the 60 and 70 second segment duration where MAP
dropped unexpectedly (see Figure 3.5). We therefore implemented fixed-length
segmentation with windows that overlapped by 50%, removing this anomaly
without substantially altering retrieval performance otherwise. Table 4.8 is sim-
ilar to Table 4.7, except segmentation with overlapping windows was used.

The use of overlapping segments practically disqualifies the cost function as
an evaluation method, for obvious reasons. Linear correlation for the TREC9
queries is somewhat higher than for non-overlapping segments for all other mea-
sures, but not significantly. The difference is smallest for the RBO-based meth-
ods. The most likely explanation is that RBO has more bias towards the top
of the result list, so the anomaly may have affected this measure the least for
the non-overlapping segmentations. The highest correlation for fixed-length seg-
mentation with overlapping windows is found for Average Overlap and RBO0.98.

TextTiling Using TextTiling story segmentation, we evaluated the retrieval
performance for twenty settings of two parameters (see Section 3.2.2). Table
4.9 gives the rank correlation results for the extrinsic ASR-for-SDR evaluation
methods on the twenty segmentations that were generated using TextTiling.
The cost function clearly has the lowest correlation with MAP (though p-values
are less then 0.001), Average Overlap has the highest correlation for the TREC8
queries, and τAP has the highest rank correlation for the TREC9 queries and
the full set of queries.

The linear correlation of MAP with the extrinsic ASR-for-SDR measures
for the twenty TextTiling settings is shown in Table 4.10. τAP and RBO0.95

have the highest linear correlation with MAP, although none of the extrinsic
measures is significantly better than any of the others. The cost function scores
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TREC8 TREC9 All
τ ρ τ ρ τ ρ

Kendall’s τ 0.7619 0.8870 0.7158 0.8977 0.8000 0.9414
τAP 0.7937 0.9204 0.7474 0.9053 0.8316 0.9564
Spearman’s ρ 0.7335 0.8725 0.7053 0.8902 0.7684 0.9143
Blest’s ω 0.7513 0.8738 0.7158 0.8962 0.8105 0.9429
Average Overlap 0.8085 0.9188 0.7018 0.8612 0.8000 0.9414
RBO0.98 0.7230 0.8893 0.6737 0.8406 0.7895 0.9368
RBO0.95 0.6913 0.9022 0.6526 0.8301 0.8105 0.9489
RBO0.90 0.6596 0.8634 0.5684 0.7654 0.8000 0.9459
Cseg 0.6174 0.7988

Table 4.9: TextTiling: Rank correlation of MAP with extrinsic ASR-for-
SDR evaluation measures.

TREC8 TREC9 All
Kendall’s τ 0.9138 0.8649 0.9251
τAP 0.9398 0.8650 0.9324
Spearman’s ρ 0.8898 0.8562 0.9199
Blest’s ω 0.8984 0.8680 0.9162
Average Overlap 0.9439 0.8403 0.9241
RBO0.98 0.8793 0.8057 0.9239
RBO0.95 0.8695 0.7819 0.9331
RBO0.90 0.8424 0.7624 0.9234
Cseg 0.7704

Table 4.10: TextTiling: Linear correlation of MAP with extrinsic ASR-
for-SDR evaluation measures.

significantly worse than all of the extrinsic measures, except for ω.

4.5 Conclusion

In this chapter we investigated an alternative approach to evaluation of ASR
transcripts in an SDR context. We extrinsically evaluated ASR transcripts
by making a direct comparison between ranked results from IR on a reference
and an automatic transcript. The primary goal is to do extrinsic evaluation
without using qrels, whose outcome is highly correlated with traditional MAP-
type evaluations. We tested correlation with MAP for three intrinsic methods
of evaluation for transcript noise, and for six extrinsic methods for transcript
noise and automatic segmentation.

For the ASR transcripts of the TDT-2 collection that we used in our ex-
periments, a very high linear correlation with MAP was found for the baseline
intrinsic measure TER, which itself is very similar to WER. This may cast doubt
on whether extrinsic evaluation has any added value in the context of ASR sys-
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tem optimization. However, it is important to note that the eight automatic
transcripts we used were all generated by similarly operating ASR systems, of
which the parameters were all optimized for the same target: WER. If one then
compares systems based on that target, it is no surprise that a better system
may also be better on criteria not included in the original target, as there is
no reason to expect improvements for any of the systems on non-TER related
aspects of performance. The main reason for differences in WER between the
ASR transcripts is not due to differences in parameter settings, which can be
assumed to have been optimal for each individual system, but rather due to
inherently better or more (time) efficient implementations of training and de-
coding algorithms. Our approach to ASR evaluation allows for optimization
procedures that specifically target IR performance and was shown to have as
high a correlation with MAP as TER, even in conditions where the latter was
the optimization criterion for the various ASR transcripts.

The outcomes of the experiments in this chapter showed that our approach
is clearly feasible, as all methods we investigated had very high correlation with
MAP, both for transcript noise and for automatic segmentation. The fact that
our methods were shown to have as high a linear correlation with MAP as TER
when used to evaluate ASR transcripts that were explicitly optimized for their
TER performance, is a testament to the robustness of our extrinsic measures
under various conditions. The much higher correlation with MAP than Cseg for
automatic story segmentation further shows the value of extrinsic evaluation in
an IR context.

4.5.1 Research Questions

Can we evaluate ASR transcripts in an intrinsic manner that is more appropri-
ate for SDR than traditional WER?
Answer: Using TER, IER, and RIA we can achieve very high linear corre-
lation with MAP of more than 0.99. All of these methods take more of the
transcript-processing chain of an SDR system into account than WER, thereby
removing certain irrelevant contributions to the error rate. The best correlation
with MAP was found for RIA when calculated on a stopped and stemmed ver-
sion of the (indexed) transcript, but the difference with TER was not significant.

Which method for extrinsic evaluation has the highest correlation with relative
MAP?
Answer: All of the methods we tested in this chapter had significant rank-
and linear correlations with MAP. The highest linear correlation with MAP
was consistently achieved using RBO at either the 0.95 or 0.98 setting for rank
bias. RBO was also consistently among the highest rank correlations, making
this the best method in our testing.

Can extrinsic evaluation of ASR transcripts without qrels be used to predict
MAP-based performance?
Answer: Yes. We tested this for traditional ASR transcript noise and for ar-
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tificial story boundaries. In both cases we found that linear correlation with
MAP was highly significant: for transcript noise, values of more than 0.99 were
recorded, and for story boundaries correlations of between 0.92 and 0.98 could
be obtained.

4.5.2 Summary

Extrinsic evaluation using the approach that was outlined in Section 1.3.2 re-
quires a direct comparison between the results of two IR experiments. In this
chapter we have investigated the correlation with MAP for several novel and
existing approaches to comparing ranked lists. Our experiments indicate that
extrinsic evaluation of ASR transcripts using our method can be as good as
intrinsic evaluation for the collection and the conditions that we analyzed. The
potential advantages of extrinsic evaluation in the manner that we propose in-
clude the ability to measure the quality of a system for a certain type of infor-
mation need, but without the need for qrels.

When it comes to automatic story segmentation, the intrinsic evaluation
method of using a cost function was shown to be suboptimal. Our proposed
extrinsic measures all provided a much better approximation of the rank or
value of the relative MAP and as a result are potentially better targets for
optimization of an automatic story segmentation algorithm for use in a retrieval
task.

When evaluating an automatic transcript and/or segmentation, all of the
extrinsic methods we investigated provided significant correlations with MAP.
Overall, the overlap-based methods were the most robust and RBO has the
additional advantage over AO of being ‘tunable’ for expected user behavior.
For example, if one expects a user to inspect only a few results, one could set
the RBO parameter a bit lower, giving more weight to errors at the top of the
result list. A bias parameter value of 0.95 was found to result in the highest
correlation with MAP in our experiments.



5
Artificial Queries and Transcript

Duration

In the previous chapter we investigated several intrinsic and extrinsic evaluation
measures for the quality of an ASR transcript in the context of spoken document
retrieval. These included intrinsic measures Term Error Rate, Indicator Error
Rate, and Relevance-based Index Accuracy, and extrinsic measures based on
rank correlation: Kendall’s τ , Spearman’s ρ, Blest’s ω, and τAP , or overlap:
Average Overlap and Rank-Biased Overlap. We determined the linear and rank
correlation of these measures with (relative) MAP, where the ground truth was
based on retrieval on a full reference transcript of the 400 hour English language
portion of the TDT-2 BN collection. In the context of real-life SDR applications,
it is unlikely that a 100+ hour transcript is available, making the procedure
described in Chapter 4 unrealistic for most out-of-the-lab applications. Usually
there is little more than the raw audio and a limited number of hours of manual
transcripts available as a basis for evaluation and system optimization.

In order to make the ASR-for-SDR measures practicable, one must be able to
calculate them on the basis of resources that can be realistically produced. We
therefore need to know the minimum amount of manually generated resources
needed for obtaining a reliable estimate of ASR-for-SDR quality. For TER,
IER, and RIA, only reference transcripts are needed, but for the correlation and
overlap-based methods there is also a dependence on queries. In this chapter we
investigate the practical limitations for these evaluations by determining how
the duration of reference transcripts affects the reliability of the performance
measures. Our strategy for doing this includes measuring performance using
various amounts of reference transcripts and by using differently sized sets of
appropriate queries.

In order to test the impact of the amount of reference transcripts on cor-
relation with MAP, we repeat some of our experiments from Chapter 4 but
with varying amounts of references, and with stability of correlation as per-
formance target, rather than correlation itself. Subsets of arbitrary duration
can be formed by (randomly) selecting stories from our large TDT-2 collection.
However, performing retrieval experiments on these subsets is not as straightfor-
ward, due to the fact that there are no queries or qrels defined for such ad-hoc
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selections taken from the collection. Although it is feasible to manually define
appropriate queries (and, if needed, matching qrels) for a small collection, in the
context of our experiments we need to investigate many different sets. Manually
defining queries for hundreds of subsets of TDT-2 is an unrealistic proposition.
Although query generation traditionally requires an expert who is familiar with
the contents of the collection, a practical alternative for our needs may be found
in automatic generation of collection-specific queries. In this chapter we com-
pare methods of automatic query generation and we investigate how the use of
artificial queries affects the correlation between ASR-for-SDR evaluation and
relative MAP. We address the following research questions:

• How many (artificial) queries are needed to reliably estimate ASR-for-SDR
performance?

• Which method for automatic query generation results in the highest cor-
relation between ASR-for-SDR measures and MAP as calculated from real
queries?

• How is the reliability of the ASR-for-SDR performance measures affected
by the duration of the manually transcribed references?

This chapter is organized as follows: in Section 5.1 we examine an existing
method of automatic query generation for known-item retrieval tasks and pro-
pose how this method can be adapted for generating queries for traditional IR
tasks. In Section 5.2 we shortly address the issues surrounding durational re-
quirements on reference transcripts. Artificial queries are then used in a number
of experiments that are described in Section 5.3. The results of the experiments
are provided in Section 5.4, followed by the conclusions of this chapter in Section
5.5.

5.1 Automatic Query Generation

Section 5.1.1 provides an overview of an approach to automatic query generation
that was developed for the task of known-item retrieval. This is followed by an
explanation of how we adapted this method for query generation in our extrinsic
evaluation framework in Section 5.1.2.

5.1.1 Previous Work on Artificial Queries

In [Azzopardi and de Rijke, 2006] an automatic query generation algorithm
was introduced that is aimed at supporting evaluations of known-item retrieval
tasks, see Section 2.2.5. Such a task can be thought of as retrieval with only
one target story for each query, with the specific aim of finding this target
within a larger collection of stories. Users are expected to have knowledge of
the collection and some recollection of a certain story they want to find. This
is an attractive scenario for a researcher, because when a query is specifically
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created for a selected item there is no need for additional qrels. The focus of
research was automatic query generation with an aim to produce similar values
for Mean Reciprocal Rank (see Section 2.2.5) as human-generated queries. The
same target stories were used for both real and artificial queries.

In a follow-up paper [Azzopardi et al., 2007], a general query generation
model was introduced in which first a target story was selected from a collec-
tion, then the number of terms in the query, and finally individual query terms
according to a distribution as specified in a term selection model. The general
term selection model that was used is shown in Equation 5.1. The likelihood
of term ti being selected based on the properties of story dk and user querying
model m is a weighted sum of the likelihoods of the term in the target story and
in the collection as a whole. The better the recollection of the target story the
higher the contribution of terms from the target story, so the lower the value of
λ.

p(ti|θdkm ) = (1− λ) · p(ti|dk) + λ · p(ti) (5.1)

The sampling strategy employed by a user is represented by p(ti|dk), and
three different models for this were proposed in [Azzopardi et al., 2007]: a pop-
ular, random, and discriminative term selection model. The Popular Selection
Model (PSM), Equation 5.2, is based on term frequency, where the assumption
is that a term is more likely to be selected if it occurs more frequently in a story.
The Random Selection Model (RSM), Equation 5.3, assumes an equal likelihood
for any term present in a story to be used as a term in a query. The Discrimina-
tive Selection Model (DSM), Equation 5.4, assumes that terms are chosen to be
discriminative from terms in other stories, in other words: selecting terms that
are expected to provide the highest contrast between the ‘known item’ and the
rest of the collection. In these equations, n(t, d) is the count of term t in story
d, and b(t, d) represents the binary presence of a term (1 if present, 0 otherwise)
in the story.

p(ti|dk)PSM =
n(ti, dk)∑

tjεdk
n(tj , dk)

(5.2)

p(ti|dk)RSM =
b(ti, dk)∑

tjεdk
b(tj , dk)

(5.3)

p(ti|dk)DSM =
b(ti, dk)

p(ti) ·
∑
tjεdk

b(tj ,dk)
p(tj)

(5.4)

These models were tested on a known-item retrieval task on the EuroGov
corpus for six languages. All three models were found to produce queries which
were significantly different from manually generated queries for Dutch, Hungar-
ian, and German. The PSM was the best approach on English language queries,



88 | Chapter 5 - Artificial Queries and Transcript Duration

the RSM on Spanish queries and DSM was the best for Portuguese queries. In
these cases, and for the PSM on Spanish, the artificial queries did not result in
a significantly different MRR from manual queries. Furthermore it was deter-
mined that the similarity in MRR between the artificial and manual queries did
not depend on the collection size, nor on the size of the vocabulary.

5.1.2 Artificial Queries for Extrinsic ASR Evaluation

The ASR-for-SDR measures that were investigated in Chapter 4 were used in
a traditional IR evaluation scenario that is rather different from the one in
[Azzopardi et al., 2007]. Adapting their method for MAP instead of MRR seems
like a daunting task, as getting similar performance for a single item was shown
to be rather difficult. Without such a clear target, automatic query generation
for traditional TREC-style retrieval is expected to be even harder. There is also
little previous work for such a task and there seems to be much less of a need for
artificial queries in traditional IR, as evaluation is more likely to be limited by
the resources needed for generating qrels than by queries. However, in contrast
to the work that was summarized in Section 5.1.1, we do not need our artificial
and real queries to result in similar values for MRR or MAP. Instead, we focus
on the behavior of our ASR-for-SDR measures and the correlation with relative
MAP. Given these differences we propose an approach to query generation which
is inspired by the three term-selection models from [Azzopardi et al., 2007].

For a collection with human-made queries and qrels, we re-interpret each
query as multiple known-item retrieval tasks. For each of these tasks, one of
the stories that were judged as relevant is designated as the known-item. In
the case of the TDT-2 collection for example, there are ∼ 4000 relevant stories
for 99 queries. This gives us ∼ 4000 known-item retrieval tasks. We collect the
following statistics on these tasks:

• The terms in each query are divided into two categories for each target
story: in-target-story terms and out-of-target-story terms. The distribu-
tion in number of terms in each of these two groups is recorded.

• For the group of in-target-story terms, we record the distribution of p(ti|dk)
based on the assumption of having been selected using PSM, RSM, and
DSM.

• For the group of out-of-target-story terms (which do not occur in the
target story), we record the distribution of p(t).

As the queries we use were not originally conceived as known-item queries,
they contain relatively many terms that are not-in-target-story. For these terms
p(ti|dk) is always 0. We therefore handle these separately from the in-story
terms and characterize them by their p(t). Due to the fact that the number
of out-of-target-story terms was (much) higher than the in-target-story terms
for the TREC-SDR queries we used for analysis, we generate only half as many
out-of-target-story terms as we found in the TREC-SDR queries.
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Using the statistics that were collected in this manner from the real queries
from TREC-SDR, we generate new queries according to any of the three term
selection models and the following procedure:

• Choose a term selection model to use for calculating p(ti|dk).

• Select a target story dk from the collection. The length of dk must be at
least x% of the average length of all stories in the collection.

• Generate a query length, with the number of in-story terms and out-
of-story terms randomly determined following the recorded distributions
from real queries.

• For each in-story term, generate a target p(ti|dk) according to the recorded
distributions from the real queries and relevant stories.

• For each generated p(ti|dk), randomly select a term from the y% of terms
in the story that are closest to this target. Add this term to the query.

• For each out-of-story term, generate a target p(t) according to the recorded
distributions from the real queries and non-relevant stories.

• For each generated p(t), randomly select a term from the y% of terms in
the collection that are closest to this target, and are not in dk. Add this
term to the query.

Some speech collections contain a relatively high number of particularly short
stories. For example, the TDT-2 English BN speech collection has an average
story duration of 173 words, with half of the stories less than 86 words long. In a
BN context short stories may not have much content, but could be filler content
or overviews of upcoming stories. We want to avoid having these non-content
stories as retrieval units, as they are unlikely to be targeted by real queries. A
higher value of x results in the selection of longer targets, thereby increasing
the likelihood of the target being a content story.

The selection of terms cannot be too rigid, as this may limit the number
of possible queries for a given target story. When the collection contains only
those stories that were manually transcribed, as is the case in ASR-for-SDR
evaluation, the number of stories is likely to be limited. However, given that
artificial queries are relatively easy to generate, we may want to use relatively
many of them. This means that we may need to generate multiple queries
for a single target. With an average of 102 unique terms for each story in
the TDT-2 collection, there is a risk that the term selection models always
converge towards the same terms. To ensure that the selection mechanism does
not result in the same terms being selected repeatedly, we allow for a certain
amount of deviation from the target statistical properties for each term. The
allowed amount of deviation can be controlled using y, with a high value of y
resulting in the target p(ti|dk) or p(t) being only loosely followed, and a lower
value resulting in a ‘tighter’ selection of terms.



90 | Chapter 5 - Artificial Queries and Transcript Duration

5.2 Amount of Reference Transcripts

Traditionally, ASR evaluations using WER are performed on a small subset
of the full task. Provided the subset is representative of the collection, the
resulting WER should give a reliable estimate of the number of errors that can
be expected in a full transcript. Since a human-made transcript was available
for the entire English part of the TDT-2 collection, we used it in Chapter 4
as ground truth to get the best possible gauge of ASR-quality. For WER, the
validity of the subset approach has been shown [Young and Chase, 1998], but for
our IR-based ASR evaluations it is unclear how the size of a randomly selected
subset affects the correlation of ASR-for-SDR evaluation with MAP.

For most evaluations, it is assumed that subsets of a collection can be chosen
in such a way that they are representative of overall (or rather average) quality,
even if there is much variation in the speech. For WER, this can be tricky
as an ASR system may for example have a WER of <10% on clean studio
speech, whereas spontaneous conversational speech is transcribed with a WER
that exceeds 50%. In a collection that contains a mix of both, it is important
that they are each represented in the subset and in the right amount. Without
detailed knowledge of the entire collection, this may mean that a large subset
must be used in order to ensure it is representative of the full collection.

For our extrinsic ASR-for-SDR measures, which are based on IR perfor-
mance, it is unclear how one should go about selecting stories from the collection
for inclusion in an evaluation. Although ASR transcript quality is expected to
be a factor in such an evaluation, IR evaluation is content-based, so content may
also be needed as a selection criterion. To avoid such issues, and because we do
not wish to assume any knowledge of the collection, we assume that the selec-
tion of a ‘representative’ subset is done in a random manner. To obtain a subset
of a given length, multiple fragments from random locations in the collection
are included. The main restriction is that fragments must be typical retrieval
units, usually ‘stories’. For an unsegmented collection this can be implemented
by randomly generating positions in the collection and then manually finding
the closest natural boundaries around this location. In the case of a collection
for which (full) reference story boundaries are available, these may be selected
directly. One can add randomly selected stories until the duration requirement
is met.

5.3 Experimental Setup

The methods that were proposed in Chapter 4 for ASR-for-SDR evaluation
were found to have a high rank and linear correlation with the relative MAP
of systems based on transcripts with varying amounts of noise. As was done in
TREC8 and TREC9 SDR, we assume that the impact of transcript noise on IR
is reflected in relative MAP. Although the selection of stories for the evaluation
and the choice of queries are likely to have an impact on the absolute values
of our ASR-for-SDR evaluation measures, their relative values are expected to
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remain similar across various automatic transcripts, at least for queries that
conform to broadly similar characteristics. This is important as we cannot
expect to have a full reference transcript, and must be able to estimate relative
retrieval performance on a selection of stories for which ‘real’ queries are not
available. For measuring transcript noise using the proposed extrinsic measures,
we need a reference transcript of an appropriately sized subset of the collection,
and queries that are suitable for doing a traditional IR task on this selection of
stories.

With our experiments we want to determine: i. how many (artificial) queries
are needed for ASR-for-SDR evaluation, ii. which method for automatic query
generation results in the highest correlation between our measures and MAP,
and iii. how the reliability of our measures is affected by the duration of the refer-
ence transcript. The second one is done by comparing correlation between MAP
on real queries and the ASR-for-SDR measures on real and artificial queries gen-
erated using each of the three query term selection methods. The first and third
are achieved by testing various sets of a given amount and analyzing how much
the choice of queries/stories impacts the correlation between MAP and the ASR-
for-SDR measures. If we assume that on average any selection of queries/stories
results in the correct values of ASR-for-SDR measures, and therefore a high cor-
relation with MAP, then the standard deviation can be used to determine how
likely it is for any particular selection to be sufficiently representative of the col-
lection to ensure this high correlation. We expect that the larger the amount of
queries/transcripts, the lower the standard deviation of the ASR-for-SDR values
and more importantly, the lower the standard deviation of the correlations.

In Section 5.3.1 we describe the experiments for determining the required
number of queries for ASR-for-SDR evaluation, followed by our approach to
determining the best way of generating artificial queries in Section 5.3.2. How we
investigate the relationship between the amount of transcripts and the reliability
of the extrinsic measures is explained in Section 5.3.3, and finally Section 5.3.4
contains a description of the test collection and the configuration of the IR
system we use.

5.3.1 Number of Queries

The choice of queries may determine the absolute value of the ASR-for-SDR
measures, but this need not impact their rank or linear correlation with relative
MAP. See for example the queries of TREC8 and TREC9 SDR, which resulted
in absolute MAPs of 0.46 and 0.34 respectively on the reference transcript,
but whose relative values were rather similar over nine different transcripts.
Absolute values of the evaluation measures are therefore not our main concern,
as these are mainly determined by the difficulty of the queries from an ASR
perspective. For example, queries which contain OOV terms are likely to result
in larger differences between reference and ASR transcript performance than
queries that contain typically ‘easy’ terms, such as the TREC8 and TREC9
SDR queries (see Section 4.3.1). However, if there is much variation in the
absolute values of the ASR-for-SDR measures as a function of the queries that
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we artificially generate, this may indicate that individual queries have a large
impact on the outcome of the experiments. Because we do not typically control
these queries individually, this is something we would prefer to avoid.

Our aim in this experiment is to determine how stable our measures are
as a function of the number of queries that are used in the evaluation. When
calculating MAP, 50 queries are used as a minimum to get a stable ranking of
systems, although many more queries may be needed to stabilize the absolute
value of MAP. It is however important to note that the 50 real queries that
are used in benchmarking conditions are all carefully selected, so the presence
of particularly hard queries is often quite intentional. In the case of artificial
queries, the presence of ‘difficult’ queries must be a function of the query gener-
ation algorithm, and not depend on random factors. As our proposed measures
require no qrels, we may generate many more queries than is typically done for
MAP evaluations, thereby ensuring a more uniform result.

The stability of our measures can be expressed using the relative standard
deviation (%RSD), which is the standard deviation as a percentage of the aver-
age value from several runs. Our procedure is as follows:

• Generate a large set of queries.

• Randomly select n sets of m queries from this set and perform an IR
experiment using these queries on the full collection.

• Calculate the values for each of the extrinsic measures based on the results.

• Repeat this t times and take the means of the t average values and stan-
dard deviations of the measures.

The resulting mean average standard deviation can then be expressed as a per-
centage of the mean average value, giving us the %RSD. For our experiments
we used n = 100, t = 10, and varied m between 10 and 500 queries, with a total
pool of 2500 queries.

5.3.2 Artificial Queries

The three query generation models that were explained in Section 5.1.1 can be
used to generate new queries following the patterns of other – typically human
generated – queries, as explained in Section 5.1.2. Each of these three models
is based on a different assumption of the human query generation process. We
aim to determine which model results in queries that best mimic the behavior of
real queries in the context of the extrinsic evaluation measures, and whether this
behavior is sufficiently similar for artificial queries to be used in ASR-for-SDR
evaluation.

We distinguish two dimensions for the quality of artificial queries: How
similar are they to real queries for ASR-for-SDR? and How useful are they in
the context of predicting relative MAP and ranking of transcripts with varying
amounts of noise? The correlation between the results for the various measures
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using real and artificial queries is used to determine their similarity. The corre-
lation with MAP as estimated using 99 real queries and corresponding qrels is
the basis for determining the usefulness of the artificial queries in the context
of ASR-for-SDR evaluation.

Three sets of n (chosen based on the results of the experiments described in
Section 5.3.1) artificial queries are generated using the query generation models
and the methodology as outlined in Section 5.1.2. We use x = 50 and y = 20
and the TDT-2 collection and TREC8 and TREC9 SDR queries for learning
the distributions of the query terms. An IR experiment is performed on eight
different noisy ASR transcripts and a human-generated reference transcript for
the three sets of 250 artificial and the 99 real queries. MAP is calculated for the
real queries using corresponding qrels, for all nine transcripts. Eight different
extrinsic measures: Kendall’s τ , τAP , Spearman’s ρ, Blest’s ω, Average Overlap,
RBO0.98, RBO0.95, and RBO0.90 are used to calculate the similarity between
ranked results on the reference and the noisy ASR transcripts for each set of
artificial queries. We then calculate correlation with MAP, which is based only
on real queries(!). We also compare the values of the extrinsic measures between
real and artificial queries directly.

A high rank correlation with MAP indicates that the artificial queries re-
sult in values for the measures that can be used to rank noisy transcripts in
accordance with how they would be ranked if real queries with corresponding
qrels were used. High linear correlation means that the measures can be used
to estimate the relative value of MAP for an automatic transcript, which is a
measure for the impact of transcript noise on IR performance. A high rank
or linear correlation between the values of the measures on the real and the
artificial queries indicates that the artificial queries behave similarly to the real
queries in the context of evaluating transcript noise.

Using these correlations we compare the performance of the output of three
automatic query term selection models to the real queries to see which model
is the best fit for our our purposes and whether its performance is sufficient for
the use of artificial queries in the experiments that must be done to determine
the amount of transcripts needed for ASR-for-SDR evaluation.

5.3.3 Amount of Transcripts

We test how much transcribed speech is needed from the TDT-2 collection,
assuming a random selection of stories, to have a reasonable chance of it being
representative of the full collection, in the context of both the intrinsic and
extrinsic evaluation measures from Chapter 4.
Our procedure is as follows:

• Choose 15 durations to test.

• For each duration, select 10 sets of stories from the collection that have a
total length that is equal to this target.

• For each set of stories (10× 15 = 150), generate n artificial queries.
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• Perform an IR experiment on eight automatic and the reference transcript
for each of the n×150 sets of artificial queries (and story sets). This results
in 9× 150 = 1350 IR tasks with n queries each.

For each of the 15 durations we then calculate the %RSD in the values of
measures, as well as the rank and linear correlations between MAP on the full
collection and the values of the intrinsic and extrinsic ASR-for-SDR measures
of the evaluation sets. We choose n based on the results of the experiments
described in Section 5.3.1.

A lower %RSD for in the values of the measures means that there is an
increased likelihood that a random choice of stories of that duration is represen-
tative for the collection as a whole. We expect that more (longer) transcripts
result in a lower %RSD for our measures. Our goal is to determine how much
the %RSD depends on the duration of the speech transcripts in the context of
the various measures.

We distinguish three contexts for the use of ASR-for-SDR measures:

• As an absolute indication of transcript quality.

• As an indication of relative performance of an IR system that uses the
transcript.

• As a means to estimate relative MAP.

In the first of these contexts, the relationship between the duration of transcripts
and %RSD of the raw measures needs to be examined, for the second and third
context, the %RSD of the rank and linear correlation respectively between the
measures and MAP is of interest.

5.3.4 Test Collection and IR Configuration

As with our experiments in Chapter 4 we used the English language subset of
the TDT-2 Broadcast News speech collection collected in 1998 and 1999 for
performing IR experiments, see Section 2.2.4 . For this collection we have 99
topics (queries) with corresponding qrels which were developed by NIST for the
TREC8 and TREC9 SDR benchmarks[Garofolo et al., 2000b] in 2000 and 2001.
We used eight different automatic transcripts, seven of which were generated in
2000 in the original benchmark context, and one more recently in 2008. The
latest transcript was done by CNRS-Limsi specifically for our experiments and
represents a current state-of-the-art system for high-speed English language
BN-speech transcription.

Additionally we used a full manual reference transcript of the 400 hours of
speech. A small part of this reference (around 10 hours) was done to benchmark
standards and provided by LDC1. The remainder was made up of closed-caption
quality transcripts with a WER that was estimated as ranging from 7.5 to 14.5%

1http://www.ldc.upenn.edu
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# of queries 10 25 50 100 250 500
Kendall’s τ 6.20 4.13 2.86 1.99 1.23 0.80
τAP 6.33 4.02 2.96 1.99 1.23 0.81
Spearman’s ρ 5.29 3.28 2.26 1.66 1.01 0.65
Blest’s ω 5.25 3.20 2.28 1.62 0.96 0.64
Average Overlap 4.54 2.86 1.95 1.36 0.83 0.58
RBO0.98 6.85 4.26 2.95 2.10 1.31 0.85
RBO0.95 7.73 4.82 3.39 2.36 1.44 0.96
RBO0.90 8.86 5.53 4.06 2.73 1.72 1.13

Table 5.1: %RSD for eight ASR-for-SDR evaluation measures for various
amounts of queries.

for radio and television sourced material respectively [Garofolo et al., 2000b].
This introduces an additional source of noise, as our reference may contain errors
which are not present in the automatic transcripts. Although the difference
between reference transcript and what was really said is likely to have some
impact on the values of the ASR-for-SDR measures, we cannot easily determine
the amount of impact, but will assume it is small enough to not influence our
conclusions.

All IR experiments were done using a custom IR system which used the
bm25 ranking function with b = 0.5 and k1 = 1.1. Up to 1000 results were
generated for each query. The limit of significance is always at p<0.05, and all
reported correlations are significant, unless stated otherwise.

5.4 Results

5.4.1 Number of Queries

Using the PSM algorithm, see Section 5.1.1, we generated 2500 queries for the
(complete) English part of the TDT-2 BN speech collection following the method
described in Section 5.1.2. IR experiments were done on both the reference and
the Limsi automatic transcript from 2008. We then selected queries from this
set of 2500 using the method described in Section 5.3.1, with n = 100, t = 10
and with m at 12 values between 10 and 500. For each selection of queries we
calculated the value of the eight ASR-for-SDR correlation and overlap-based
evaluation measures.

Figure 5.1 shows the relative standard deviation as a function of the number
of queries that was used to determine the value of the measures: Kendall’s
τ , τAP , Spearman’s ρ, Blest’s ω, Average Overlap, RBO0.98, RBO0.95, and
RBO0.90. All of the measures follow the same pattern: more queries results in
lower %RSD, and therefore more stable values. Table 5.1 contains the exact
values for m equal to 10, 25, 50, 100, 250, and 500.

Some methods show an intrinsically lower %RSD than others, but this does
not mean they can be used with fewer queries than the other measures. It simply
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Figure 5.1: %RSD as a function of the number of queries used for deter-
mining the value of eight extrinsic ASR-for-SDR evaluation measures.

reflects the fact that some methods naturally show less variation in their absolute
values. For example, Kendall’s τ and Spearman’s ρ are highly correlated and
have the same range of -1 to +1, but the value of Spearman’s ρ varies (much) less
in these conditions. The Overlap-based methods have a range between 0 and 1,
but only have a value of 0 when two sets are disjoint rather than simply having
uncorrelated rankings. So although it may seem as if Average Overlap requires
roughly half the number of queries as compared to Kendall’s τ to achieve the
same stability, this need not have any consequences for the rank and/or linear
correlation of these values with MAP.

The main message to take away from Figure 5.1 is that all measures react in
a similar manner to an increase in the number of queries, and that more queries
results in more stable values for our measures which holds true up to the limits
of our experiments at 500 queries. One needs about quadruple the amount of
queries to achieve a 50% reduction in %RSD.

5.4.2 Artificial Queries

We compared rank and linear correlation between the ‘real’ TREC8 and TREC9
SDR queries and 250 artificial queries, generated using three different user mod-
els on the same collection. The results are shown in Tables 5.2, 5.3, and 5.4,
for the user models based on the popular, random, and discriminative selection
models respectively. These tables show the rank correlation using Kendall’s τ
and Spearman’s ρ, and linear correlation using Pearson’s r between the 250 ar-
tificial queries and the 99 real queries. The ‘MAP’ column shows the rank and
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linear correlations between relative MAP as calculated from the 99 real queries
and the values of the various measures as calculated on the 250 artificial queries.
The ‘real’ columns give the correlations between the values of the various mea-
sures as calculated on the 99 real queries and the 250 artificial queries using the
same measure.

If we assume that MAP as achieved on the real queries provides a good
measure of the quality of the ASR in an SDR context, then a high correlation in
the ‘MAP’ columns implies that our artificial queries are suitable for estimating
the ASR quality. A high correlation in the ‘real’ columns implies that our
measures behave similarly on the artificial queries as they do on the real queries
for various amounts of transcript noise. As the results in Tables 5.2, 5.3, and 5.4
show, all three models result in significant and high rank and linear correlations
with real queries.

A comparison between the three query generation models in their similarity
to the 99 real queries (using the ‘real’ columns), shows that DSM typically scores
lower than the other two on rank and lower than RSM on linear correlation,
except for Kendall’s τ on rank and linear correlation and Spearman’s ρ on
linear correlation. PSM and RSM are similar on rank correlation, except for
RBO0.98 and RBO0.95. On linear correlation, RSM scores slightly higher on
all methods except for RBO0.98. This leaves the overall impression that RSM
results in queries that behave most similarly to real queries on these measures.
PSM is worst in terms of linear correlation, whereas DSM is worst for rank
correlation. None of the differences between the various methods and query
generation models are significant though.

Comparing the three query generation models on their usefulness in a context
of ASR-for-SDR evaluation (using the ‘MAP’ columns), again shows that DSM
scores lower than the other two models on rank correlations, except for RBO0.95

and RBO0.90, but in this case also on linear correlation. PSM and RSM are
again very similar on rank correlation, with RSM only better on RBO0.95. For
linear correlation PSM is better for each method except for Average Overlap,
RBO0.95, and RBO0.90 where both systems are virtually tied. The best query
generation model for use in an ASR for SDR evaluation context therefore seems
to be PSM, although the difference with RSM is very small.

For all the different evaluation methods, a high rank and linear correlation is
found between real and artificial queries, with results for RBO0.95 and RBO0.90

slightly lower than the rest. The use of artificial queries instead of human
generated queries has no appreciable impact on the usefulness of these evaluation
methods, in terms of linear or rank correlation with MAP. The best query term
selection model from the perspective of predicting system ranking and relative
MAP is PSM, which gives both the highest linear and rank correlation for almost
all evaluation methods.

5.4.3 Amount of Transcripts

We recognize three aspects of the stability of the various measures as a function
of the amount of transcripts used: i. the values of the measures, ii. the stability
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τ ρ r
MAP real MAP real MAP real

Kendall’s τ 1.000 0.929 1.000 0.976 0.996 0.961
τAP 0.929 1.000 0.976 1.000 0.995 0.959
Spearman’s ρ 0.929 1.000 0.976 1.000 0.995 0.924
Blest’s ω 0.929 0.929 0.976 0.976 0.995 0.949
Avg Overlap 1.000 1.000 1.000 1.000 0.996 0.977
RBO0.98 0.929 1.000 0.976 1.000 0.989 0.973
RBO0.95 0.714 0.786 0.881 0.905 0.980 0.976
RBO0.90 0.786 0.857 0.905 0.929 0.974 0.975

Table 5.2: PSM: Correlations between MAP on 99 real queries and ASR-
for-SDR evaluation measures on 250 artificial queries.

τ ρ r
MAP real MAP real MAP real

Kendall’s τ 1.000 0.929 1.000 0.976 0.992 0.977
τAP 0.929 1.000 0.976 1.000 0.991 0.974
Spearman’s ρ 0.929 1.000 0.976 1.000 0.990 0.948
Blest’s ω 0.929 0.929 0.976 0.976 0.989 0.969
Avg Overlap 1.000 1.000 1.000 1.000 0.997 0.982
RBO0.98 0.929 0.857 0.976 0.952 0.985 0.969
RBO0.95 0.857 0.929 0.952 0.976 0.980 0.977
RBO0.90 0.786 0.857 0.905 0.952 0.976 0.981

Table 5.3: RSM: Correlations between MAP on 99 real queries and ASR-
for-SDR evaluation measures on 250 artificial queries.

τ ρ r
MAP real MAP real MAP real

Kendall’s τ 0.857 0.929 0.952 0.976 0.983 0.981
τAP 0.857 0.929 0.952 0.976 0.988 0.972
Spearman’s ρ 0.857 0.929 0.952 0.976 0.970 0.962
Blest’s ω 0.857 0.857 0.952 0.952 0.980 0.967
Avg Overlap 0.857 0.857 0.952 0.952 0.985 0.944
RBO0.98 0.786 0.714 0.905 0.881 0.965 0.936
RBO0.95 0.857 0.786 0.952 0.905 0.965 0.957
RBO0.90 0.857 0.786 0.952 0.905 0.963 0.959

Table 5.4: DSM: Correlations between MAP on 99 real queries and ASR-
for-SDR evaluation measures on 250 artificial queries.
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of system ranking as they follow from the values of the measures, and iii. the
linear correlation of the measures with relative MAP as achieved using real
queries on the full collection.

Experiments were performed on subsets of several different durations that
were taken from the full collection. We evaluated for durations of 30, 60, 120,
180, 240, 300, 360, 420, 480, 540, 600, 750, 900, 1050, and 1200 minutes. For
each duration, we randomly selected stories from the collection until the required
duration was met. We then generated queries using PSM, specifically for the
selected stories. For the shorter durations of 30 and 60 minutes 100 queries
(n = 100) were generated, for all other durations we used 250 queries (n = 250).
The stability of the measures when used with artificial queries was established
in Section 5.4.1. For 100 queries this was between 1.4 and 2.7%RSD (depending
on the measure used), and for 250 queries it was between 0.8 and 1.7%RSD.
Each retrieval experiment was repeated with ten different subsets of each length,
on nine different transcripts.

Stability of the raw values Figure 5.2 shows the %RSD of the eight ex-
trinsic methods of ASR for SDR evaluation, versus the duration of the manual
transcripts used. As expected, the measures become more stable as more ref-
erences are used. As there is a linear relation between the amount of effort
required and the amount of transcripts we have, it is important to know how
much is actually needed in order to get a fair assessment of performance. For
all of the eight measures shown in Figure 5.2, around 180 minutes of reference
transcripts results in less than ∼ 3%RSD. Increasing the duration of the ref-
erence transcripts beyond 180 minutes gives slightly more stable results, but
clearly provides diminishing returns.

The results for the intrinsic evaluation measures are shown in Figure 5.3.
The ‘t’ at the end of the name of the measure indicates that its values was
calculated using only query terms, making it an extrinsic evaluation. TER and
IER show very similar %RSD values, which remain above 4% until eight hours
of transcripts were used, and slowly improve with more transcripts. A much
lower %RSD is found for RIAt, with a value of only 2% when using 30 minutes
of references and remaining below 1% for most other (longer) durations.

As with Figure 5.1 the %RSD of the individual measures is of little overall
importance as the main aim is to obtain high correlation with MAP. No hard
conclusions can be drawn from the %RSD of the absolute values.

Stability of linear correlation The %RSD’s of the measures are not our
main concern, as they do not say much about the stability of linear and rank
correlation, which is what is needed when using them to determine the quality
of a transcript in an SDR context. Linear correlation for the extrinsic methods
is shown in Figure 5.4, and for the intrinsic methods in Figure 5.5.

A comparison between Figures 5.2 and 5.4 confirms that the absolute value
of %RSD for the measure says little about the %RSD of its linear correlation
with MAP. Average Overlap had the most stable raw value, but when used to
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Figure 5.2: %RSD of the extrinsic ASR-for-SDR evaluation measures as
a function of the amount of transcripts used to determine their value.

calculate linear correlation it is not significantly different from the other extrinsic
measures. It is however the only measure to consistently not exceed 2% RSD for
each transcript duration of more than 180 minutes. This 180 minutes duration
seems to be the sweet spot for most measures, except for RBO0.98 which still
has an %RSD of over 6% at this point.

The peaks in Figure 5.4 at 300 and 750 minutes for Blest’s ω and Spearman’s
ρ may be caused by the (random) choice of stories for the evaluation. We used
‘only’ ten runs for each duration, so they may have been caused by one or
two unfortunate selections of stories. What is interesting however, is that the
same stories (and queries) did not cause issues for the other measures, possibly
indicating that ω and ρ result in a linear correlation that is intrinsically less
stable in the face of story selection than the other measures.

A comparison between Figures 5.3 and 5.5 shows that the lower duration
stability of TER and IER as compared to RIA has no impact on the duration
stability of the linear correlation with relative MAP. In fact, although the ‘t’
versions of the measures are roughly equal in Figure 5.3 to their non-‘t’ coun-
terpart, they show a consistently better performance in the duration stability
of the linear correlation. For the intrinsic measures, a duration of around 180
minutes of manual transcripts seems to be a reasonable target for obtaining a
reliable estimate of relative MAP.

Stability of rank correlation Similar to the previous paragraph, the %RSD
of the Kendall’s τ rank correlation between the values of the extrinsic and
intrinsic measures and relative MAP are shown in Figures 5.6 and 5.7. Notice
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Figure 5.3: %RSD of the intrinsic ASR-for-SDR evaluation measures as a
function of the amount of transcripts used to determine their value.

the vertical scale which is larger than in the previous figures to accommodate
for the fact that %RSD is generally larger for rank correlation than for linear
correlation when there are only eight transcripts to rank. Most of the measures
hover between 5 and 10% RSD, with Average Overlap and Kendall’s τ the
only extrinsic measures to remain below 7% for all durations of more than 180
minutes. The intrinsic measures show very similar behavior, except for RIAt
whose system ranking is more stable in the face of changing queries/stories than
the other measures. For the extrinsic measures and the topic-specific intrinsic
measures, 240 minutes seems to be a reasonable minimum amount of transcripts
to use for evaluation of system ranking.

5.5 Conclusion

We set out to determine how many (artificial) queries are required for ASR-
for-SDR evaluation using extrinsic measures, which method of automatic query
generation results in the highest correlation with MAP, and how the reliability
of the evaluation is affected by the amount of reference transcripts.

Our experiments have shown that increasing the number of queries results
in a more stable, and therefore more reliable, estimate of ASR quality using
the extrinsic measures. Assuming a (rather arbitrary) target of ∼ 3%RSD, one
needs at least 100 artificial queries. Furthermore, no appreciable impact on rank
or linear correlation between the extrinsic measures and MAP was found due to
the use of artificial queries on the TDT-2 collection. In fact, linear correlation
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Figure 5.4: %RSD of linear correlation with MAP for the extrinsic ASR-
for-SDR evaluation measures as a function of the amount of transcripts used
to determine their value.

between ASR-for-SDR measures on 250 artificial queries and MAP on 99 real
queries was slightly higher than when both were calculated on the same 99 real
queries for most measures.

The amount of transcripts that is needed for extrinsic evaluation is somewhat
dependent on the requirements of the application. To obtain a reliable linear
correlation, 3 hours was shown to be enough for less than ∼3%RSD. Rank
correlation on eight transcripts results in a somewhat higher %RSD for almost all
reference transcript durations, but using at least 4 hours of manual transcripts
seems to be a reasonable compromise between performance and effort.

These findings show that the ASR-for-SDR measures that were investigated
in Chapter 4 are not only viable from a performance point of view, but can
also be implemented without a need for large amounts of resources. Although
the manual transcripts must be selected in such a way that they cover com-
plete ‘stories’, there is no need for more material than would be required for
traditional ASR evaluation using WER. For a somewhat ‘generic’ approach to
extrinsic evaluation, one could generate artificial queries and use these to get an
initial impression of ASR-for-SDR performance. A real in-depth analysis that
specifically targets a usage scenario requires queries that are representative of
such a scenario, but there is no need for generating ‘expensive’ qrels, making
this a rather feasible proposition for most collections.

We conclude that extrinsic evaluation of ASR quality in an SDR context can
be done reliably without needing qrels and without excessive amounts of ref-
erence transcripts. Given the availability of off-the-shelf IR solutions, extrinsic
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Figure 5.5: %RSD of linear correlation with MAP for the intrinsic ASR-
for-SDR evaluation measures as a function of the amount of transcripts used
to determine their value.

ASR-for-SDR evaluation is as accessible as traditional WER for anyone using an
LVCSR system for transcribing spoken document collections, but should result
in an evaluation that is better adapted to the context.

5.5.1 Research Questions

How many (artificial) queries are needed to reliably estimate ASR-for-SDR per-
formance?
Answer: All of the extrinsic ASR-for-SDR measures we tested reacted in a
similar way to an increase in the number of queries, with a quadrupling of
queries resulting in half the amount of %RSD. For artificial queries it makes
sense to use as many as the size of the collection and time available for evalu-
ation supports. For human-made queries, one must be prudent, as developing
queries, even without qrels, requires an amount of effort, whilst the returns are
diminishing. Our experiments showed that for the collection we examined, 100
queries was a reasonable minimum, however, as there was no need for qrels and
we used artificial queries, increasing the number of queries was relatively cheap.
We therefore used 250 queries in most of our experiments.

Which method for automatic query generation results in the highest correla-
tion between ASR-for-SDR measures and MAP as calculated from real queries?
Answer: We compared three automatic query generation algorithms for their
similarity in behavior to real queries and their usefulness in estimating relative
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Figure 5.6: %RSD of Kendall’s rank correlation with MAP for the extrinsic
ASR-for-SDR evaluation measures as a function of the amount of transcripts
used to determine their value.

MAP and relative rank of eight different noisy transcripts. All methods resulted
in high correlations and are expected to yield useful results. In a direct compar-
ison, the popular term selection model performed slightly better than the other
two on linear correlation with relative MAP, though not significantly, and was
therefore chosen for use in our other experiments.

How is the reliability of the ASR-for-SDR performance measures affected by
the duration of the manually transcribed references?
Answer: Linear correlation between the values of the intrinsic and extrinsic
measures and relative MAP stabilized at around 2% RSD when 3 hours of tran-
scripts were used, increasing the amount of transcripts significantly (to 10+
hours) caused a further reduction to around 1% RSD in our experiments. Rank
correlation between the ASR-for-SDR measures and relative MAP. stabilized
from around 4 hours of reference transcripts.

5.5.2 Summary

We have shown that extrinsic evaluation of ASR transcripts using a very lim-
ited amount of manually created resources can be nearly as good as similar
evaluations using a full transcript of a 400-hour speech collection and set of
99 hand-made queries. This means that extrinsic evaluation of ASR-for-SDR
can be done without expending more effort than for traditional WER-based
evaluations.
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Figure 5.7: %RSD of Kendall’s rank correlation with MAP for the intrinsic
ASR-for-SDR evaluation measures as a function of the amount of transcripts
used to determine their value.

If there is no possibility to manually generate representative information
requests, one can automatically generate queries. The best of the methods we
investigated resulted in a higher linear correlation with MAP for most of the
ASR-for-SDR measures than using real queries. If there is a need to test specific
information requests, for example, with a focus on named entities, one may need
to employ different automatic query generation strategies. We have not tested
these as there was no comparable human-made set with qrels available to test
for such conditions.

Extrinsic evaluation of ASR-for-SDR can be done using artificial queries
and with as little as 3 hours of manually transcribes speech. This makes this
type of evaluation as accessible as WER-based evaluation, but with the distinct
advantage of being better attuned to the needs of spoken document retrieval.
In addition, extrinsic evaluation grants the possibility to adapt the evaluation
for a specific information need through the choice of queries, or for an expected
application through tuning the evaluation depth.





6
Summary and Conclusion

6.1 Summary

In this thesis we have introduced a novel framework for the evaluation of ASR
transcripts in an SDR context. An overview of this framework was given in
Chapter 1 and is its visualization is repeated in Figure 6.1. The basic premise
is that ASR transcripts must be evaluated by measuring the impact of noise in
the transcripts on the search results of a traditional IR task. In this framework,
calculating ASR-for-SDR is done through a direct comparison between ranked
result lists of IR tasks on a reference and a hypothesis transcript.
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Figure 6.1: Overview of a proposed novel framework for ASR-for-SDR
evaluation without the use of qrels or a need for manually generated queries
and story boundaries.

After a short summarization of previous work in automatic speech recogni-
tion and information retrieval in Chapter 2, we started our investigation into the
various aspects of this framework with a comparison of various automatic story
segmentation algorithms in an SDR context, see Chapter 3. We showed that
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intrinsic evaluation results in different conclusions with regard to the quality of
automatic story boundaries than when MAP is used. This indicates that when
automatic story segmentation is used for search applications, the traditionally
used segmentation cost may not be a good performance target. The highest
MAP was achieved using a dynamic segmentation method of our own design,
but this method cannot be implemented directly within the context of a tra-
ditional IR system as it segments on-the-fly for each query, whereas normally
pre-segmented text is indexed. Its performance may also be more dependent
on query and collection properties than the other segmentation methods we in-
vestigated, so we do are hesitant to recommend this method until it has been
tested under a wide range of conditions. A seemingly more robust approach is
chopping up the text or speech into segments of a constant (fixed) duration. On
our collection, this was functionally as good as using more advanced techniques
such as TextTiling, or a WordNet-based approach. All of the approaches to
automatic story segmentation resulted in a relatively large reduction in MAP
of around 10-15% relative. Improvements in automatic story segmentation for
SDR therefore provide an enormous potential for advancing the performance of
SDR.

In Chapter 4 we proposed several methods for the ranked result comparison
(ASR-for-SDR) in Figure 6.1. A key property of these methods is a lack of
reliance on relevance judgments (qrels). Our premise was that if the results of
these evaluations have a high linear correlation with (relative) MAP, they are an
extrinsic measure for the impact of ASR transcript noise or story segmentation
errors on retrieval performance. If the results have a high rank correlation with
MAP, they can be used to rank various approaches or configurations for their
relative expected performance when used as part of an SDR system. Linear
correlation with MAP for the various ASR transcripts and segmentations was
found to be highly significant, with RBO0.95 reaching 0.997 for transcript noise.
Rank correlation varied between essentially perfect and highly significant. Al-
though some methods had a slightly higher linear correlation than others, the
differences were rarely significant. We therefore conclude that all methods are
equally suitable for this task. The choice of which method to deploy comes
down to the aspects that are expected to be most important in the use of the
system, for example, the expected persistence of the user in the inspection of
results, or properties of the interface.

After proving the theoretical viability of the proposed framework, we looked
at practical aspects in Chapter 5. We investigated how much reference tran-
scripts were necessary to achieve the high correlations with MAP that were
found in Chapter 4. This was done by testing on a large number of subsets of
various sizes from a 400-hour collection, necessitating the use of artificial queries
rather than the real TREC SDR queries we had used up to that point. We de-
veloped an automatic query generation algorithm that was able to generate
artificial queries that resulted in our measures having as high a correlation with
MAP as when real queries are used. If we allow for a relative standard deviation
of the linear correlations at a (somewhat arbitrary) maximum of 3%, we can
estimate ASR-for-SDR performance using as little as three hours of reference
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transcripts. This amount is roughly equal to what is required to do traditional
intrinsic evaluation using WER. We therefore concluded that extrinsic evalua-
tion of ASR-for-SDR performance can be done as easily as intrinsic evaluation,
without needing more or different resources. Although we strongly recommend
using human-generated queries that truly reflect the envisaged use of the SDR
system, artificial queries were found to be a reasonable alternative when real
queries cannot be easily obtained.

6.2 Conclusion

The benefit of the extrinsic ASR-for-SDR evaluation framework that we propose,
is that it combines the desirable properties of the traditional approaches to
evaluation of ASR transcripts for use in SDR, WER and MAP, while avoiding
their limitations. The upside of WER is that it can be calculated using only
a reference transcript for a relatively small amount of speech, but its downside
is that it does not provide a differentiation between the importance of words
that are affected by the errors in an SDR context. For MAP, the opposite is
the case: MAP gives a good insight into the consequences of transcript noise
on the user experience, but it requires a prohibitive amount of resources, in
particular relevance judgments for all queries in a test set and on all stories in
the collection. The aim of the framework we propose is to provide a measure for
the quality of an ASR transcript in an SDR context that has a high correlation
with MAP, while requiring only a relatively low amount of reference transcripts
and a small set of queries as resources.

We investigated several approaches for ASR-for-SDR calculation, includ-
ing correlation-based and overlap-based methods. We distinguish two potential
sources of transcript noise: story segmentation and transcript errors. Both are
typical for the kind of noise that distinguishes speech transcripts from tradi-
tional textual sources. Correlation with MAP is somewhat higher for transcript
errors than for segmentation errors, at 0.997 for the former, and between 0.92
and 0.97 for the latter, depending on the segmentation method used. Both cor-
relations are very high, and confirm that the output of our proposed framework
can be expected to be equally useful as MAP for extrinsic transcript evaluation.
For story segmentation errors, the new approach is especially useful, since tra-
ditional intrinsic evaluation is only able to achieve a linear correlation of <0.8
with MAP for most configurations. The method we found to have the highest
correlation with MAP was Rank-Biased Overlap.

The amount of resources required for extrinsic evaluation was estimated by
establishing the relative standard deviation of the correlation with MAP for
many sets containing various amounts of reference transcripts. We compared
the %RSD between intrinsic and extrinsic approaches to ASR transcript eval-
uation, and found no appreciable difference between the two for the stability
of the outcome as a function of the amount of reference transcripts used. In
other words: our proposed framework requires the same amount of reference
transcripts as traditional intrinsic ASR evaluation for a given level of reliability
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of correlation. We established that around 3-4 hours of reference transcripts is
a reasonable minimum for a homogeneous BN collection such as we used in our
experiments.

Although queries are an important part of extrinsic evaluation, there may
be situations in which it is undesirable to have to generate these manually, for
example when evaluating ASR performance on a collection in a language for
which a native speaker is not available. We have investigated whether it is also
possible to automatically generate artificial queries following patterns that were
learned from human-generated queries. In our experiments, artificial queries
showed similar correlations with MAP as real queries, making them a feasible
alternative for situations in which real queries cannot be easily obtained. This
also means that extrinsic evaluation using our proposed framework can be done
using the same amount of human-generated resources as traditional intrinsic
evaluation, while retaining a very high correlation with MAP.

In this thesis we have demonstrated that it is possible to combine the ben-
efits of both traditional approaches to ASR-for-SDR evaluation, while avoiding
their downsides. Extrinsic evaluation of ASR transcripts can be done using only
reference transcripts as a ground truth, and queries to represent a realistic usage
scenario. Some questions remain though. For example, we have only tested our
approaches on one collection, the English part of the TDT-2 BN speech collec-
tion. Although we have avoided collection-specific solutions wherever possible,
we cannot guarantee that our approaches are generally applicable without test-
ing under a wide range of conditions. It is unlikely that suitable test-collections
can be found for all potential circumstances, but we hope that this approach
is picked up by other researchers and applied to realistic, out-of-the-lab collec-
tions. This way we hope to establish the practical limitations of our approach
and make refinements where needed.

A number of applications for our framework have not been discussed in this
thesis. These include evaluation of ASR lattices and lattice-indexation methods,
evaluation in the context of spoken term detection, evaluation of phoneme-based
search, and evaluation of ASR transcripts that are not explicitly optimized for
WER. These are all applications that are not properly served by intrinsic evalu-
ation using for example WER, and for which we expect our extrinsic framework
to be a promising prospect. We would welcome the opportunity to test our ap-
proach on these applications, as we expect that our framework is more capable
of recognizing their respective challenges than traditional intrinsic approaches
to evaluation.
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6.3 Miscellaneous Musings

In the course of this research project, we have always attempted to stay as close
as possible to real-life problems and collections. All challenges we tackled were
based on benchmark conditions, and not fabricated to fit our chosen solution. As
such, we are happy to see the high correlations between our measures and MAP,
and the relatively low amount of transcripts needed to achieve them. Some other
open issues in the field of spoken document retrieval may also benefit from the
use of realistic tasks, but have so far been limited to artificial testing because
of the large amount of resources otherwise required. This section contains some
initial thoughts on SDR-related research tracks where the evaluation method
we investigated in this thesis may help to further development.

Lattices One of our aims at the start of the project was to improve SDR per-
formance by exploiting speech recognition lattices in a novel way, more specif-
ically by infusing information that was collected from queries into the lattice
decoding process. This idea was inspired by preliminary experiments on a Dutch
non-broadcast-news speech collection for which we had a WER of ∼60%, but
where a best path through the recognition lattices could be found that had a
mere ∼20% WER. Testing whether the better paths through the lattices would
improve the system, implies measuring retrieval performance, but with no qrels,
this was virtually impossible. Although it would be feasible to test some of
our ideas on this Dutch set using hand-crafted queries and evaluate using pre-
cision@10 for example, this would still mean a relatively intricate evaluation
procedure, with little guarantee that the results are representative of real-life
usage.

Extrinsic evaluation on a benchmark task, by default using MAP, is the
only way to conclusively show the benefits of any novel approach to exploiting
ASR lattices for SDR. But after we spent more than a month analyzing lat-
tices of state-of-the-art ASR on the TDT-2 collection (courtesy of Limsi), we
concluded that no paths could be found that resulted in a higher MAP on the
benchmark tasks than the 1-best decode. As a result, no lattice indexation or
retrieval technique could possibly achieve an increase in MAP. This may simply
be the logical result of optimal system design, but perhaps much of this high
performance was a result of the fact that the ASR system was particularly well
adapted for dealing with the kind of data that was found in the TDT-2 collec-
tion. Many interesting collections are however from a domain for which much
less training material is available. As a result, 1-best transcripts may not be as
good as for TDT-2, and lattices have the potential for improving performance
for such collections.

The benefits of lattices in SDR may be limited to collections which are
challenging for ASR, for example due to a lack of matching training material.
But testing the quality of a lattice cannot be done intrinsically as lattices are
typically not an end-product and desirable properties of lattices are largely
application-dependent. If TREC-style evaluation is needed to conclusively show
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the benefits of a lattice-based approach, but qrels for MAP calculation are
typically only available for collections that are unlikely to benefit from lattices,
then developing lattice-based retrieval approaches becomes an arduous task.
Our proposed framework should make this much easier, as it allows for extrinsic
evaluations without qrels, using transcripts that can be generated quite feasibly
for most ad-hoc collections, including those that are expected to benefit from
lattice-based approaches to retrieval.

Phoneme-based Retrieval Some attempts at tackling the problem of out-
of-vocabulary (OOV) terms in SDR have used a phonetic (or subword-based)
transcript as a basis for indexing. This frees the system of the limitations of
a limited-size lexicon, but also removes important linguistic information in the
process. Phoneme-based retrieval is almost guaranteed to improve performance
for OOV terms, but is unlikely to benefit in-vocabulary query terms. With the
OOV rate of state-of-the-art LVCSR systems often under 1%, superficially it
seems there is not much potential for such an approach. The main attraction of
tackling OOVs is however not in their amount, but in their expected importance
in the context of SDR. Although rare terms in general are often too obscure to
be used in queries, Named Entities may be attractive query terms for IR users
as they are relatively unambiguous. Especially in the context of BN-search and
historical collections, the inclusion of Named Entities in queries can easily help
to focus a search task.

Assessing the benefits of phoneme-based search is not easy in a TREC-style
setting, resulting in such approaches being potentially underappreciated. On
SDR benchmark collections such as TDT-2 and TDT-3, we found no OOVs
in the available test queries for our lexicon/language model. Alternative tests
using artificial tasks, either through limiting the lexicon or through generating
queries with OOVs, may be able to show theoretical gains, but are unconvincing
for showing the benefits in real-life settings. We expect that our proposed
framework may be of help here, as it can be easily applied to any collection,
including those for which Named Entities can be expected to naturally occur in
queries. Examples are collections that reference historical events and figures, or
collections that are used in the context of genealogical research.

An interesting issue to be addressed is the required amount of transcripts
needed in scenarios of use for such collections. Unlike the queries in our experi-
ments described in Chapter 5, phonetic search targets primarily OOVs. With an
expected OOV-rate of ∼2%, this means that we may need more transcripts to
show the potential benefits of phonetic search. We would be very interested in
testing current approaches to phoneme-based retrieval with our proposed frame-
work to see what amount of transcripts is required for a proper evaluation, and
if the reported positive results on artificial tasks can be confirmed using our
proposed method of evaluation.

Beyond TREC-style Evaluation In Chapter 2 we explicitly mentioned that
information retrieval can be an iterative process in which a user adapts a query
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based on initial results. In the Cranfield approach to evaluation, this step is not
included as it is would complicate the evaluation procedure no end. However, it
is reasonable to expect that users adapt their behavior to their experience with
the system. For Spoken Document Retrieval, a simple feedback mechanism say-
ing something along the lines of ‘Harry Potter was not found in our dictionary,
could you please rephrase this part of your query’, may overcome many of the
problems of OOVs. Similarly, if a user is presented with confidence scoring for
the transcript, this may help in rephrasing queries so as to avoid the limitations
of a noisy transcript.

Our proposed framework for ASR-for-SDR evaluation allows for such sce-
narios. One could for example simply monitor each step in a multi-query search
and see whether the result on a noisy transcript becomes more similar to that
on a reference transcript as a query is refined. It is then possible to adapt the
interface and feedback mechanisms of the SDR system to investigate whether a
potential convergence in results can be achieved more quickly – using less iter-
ations – when a user is provided with more information on why certain results
were produced. In other words, our evaluation framework allows for evaluation
of more facets of the SDR process than TREC-style evaluation and can be ex-
pected to be a very useful tool in user studies on spoken document retrieval. We
would be interested to see whether users adapt their searches to the limitations
of the system and if so, how this is reflected in the ASR-for-SDR scores coming
form the refined queries as compared to the initial attempts.





Samenvatting

In dit proefschrift introduceren we een nieuw raamwerk voor het evalueren
van automatische spraakherkenningstranscripten (ASR-transcripten) voor ge-
bruik in zoeksystemen voor gesproken documenten (SDR). Een overzicht van
dit raamwerk is gegeven in Hoofdstuk 1 en een visualisatie kan worden gevon-
den in Figuur 6.1. De basisgedachte is dat ASR-transcripten moeten worden
geëvalueerd door de invloed te meten van ruis (herkenningsfouten) in de tran-
scripten op de zoekresultaten van een traditionele informatie zoek (IR) opdracht,
dit in tegenstelling tot de traditionele manier waarbij herkenningsfouten sim-
pelweg geteld worden (WER). In dit raamwerk wordt de kwaliteit van ASR-in-
SDR-context berekend door een rechtstreekse vergelijking tussen de geordende
resultatenlijst van IR-taken op een referentie- en een herkenningstranscript.

Na een korte samenvatting van eerder werk op het gebied van ASR en IR
in Hoofdstuk 2, beschrijven we de verschillende aspecten van dit raamwerk aan
de hand van een vergelijking tussen verschillende algoritmes voor het automa-
tisch opdelen van documenten (tekst of spraak) in inhoudelijk bij elkaar horende
segmenten voor gebruik in SDR, zie Hoofdstuk 3. We hebben laten zien dat in-
trinsieke evaluatie leidt tot andere conclusies over de kwaliteit van de gevonden
segmentgrenzen dan wanneer we de IR-evaluatiemaat MAP gebruiken. Dit geeft
aan dat als automatisch opdelen van documenten wordt gebruikt voor zoek-
toepassingen, de traditioneel gebruikte evaluatie met behulp van een segmen-
tatiekostenberekening mogelijk niet tot optimale resultaten leidt. Van de door
ons onderzochte methoden, werd de hoogste MAP behaald met behulp van een
door onszelf voorgestelde dynamische opdeling. Deze methode kan echter niet
direct worden gëımplementeerd als onderdeel van een traditioneel IR-systeem,
aangezien het documenten ter plekke opdeelt voor elke zoekvraag. Normaal
gesproken maken IR systemen gebruik van voorgesegmenteerde tekst om te in-
dexeren. De prestaties van de dynamische segmentatieaanpak zijn mogelijk ook
meer afhankelijk van de zoekvraag en de collectie waarin gezocht wordt dan de
andere methodes die we onderzocht hebben, dus we zijn voorzichtig met het
aanbevelen van deze methode totdat deze onder een groter aantal omstandighe-
den getest is. Een op het oog robuustere aanpak is het opdelen van de tekst
of spraak in delen van een constante (vastgestelde) lengte. Op onze collectie
gaf deze methode vergelijkbare resultaten met meer geavanceerde technieken
zoals TextTiling of een WordNet-gebaseerde aanpak. Alle methodes die we
getest hebben leidden tot een tamelijk grote reductie in MAP van relatief gezien
ongeveer 10-15%. Het verbeteren van het automatisch opdelen van spraaktran-
scripten voor gebruik in SDR is daarom potentieel een zeer interessante manier
om de kwaliteit van SDR te verbeteren.

In Hoofdstuk 4 hebben we verscheidene methodes voor het vergelijken van
geordende resultatenlijsten voorgesteld (ASR-for-SDR uit Figuur 6.1). Hier-
bij is een belangrijke eigenschap van het door ons gëıntroduceerde raamwerk
dat er geen relevantieoordelen (qrels) nodig zijn. Onze aanname was dat als
de resultaten van deze evaluaties een hoge lineaire correlatie hebben met (re-
latieve) MAP, ze een extrinsieke maat vormen voor de invloed van ruis in



ASR-transcripten of opdeelfouten op de prestaties van een zoeksysteem. Als
de resultaten een hoge ordeningscorrelatie hebben met MAP, dan kunnen ze
gebruikt worden om verschillende methodes of configuraties te ordenen op hun
relatieve verwachte prestaties wanneer ze gebruikt worden als onderdeel van
een SDR-systeem. De lineaire correlatie met MAP voor de verschillende ASR-
transcripten en opdelingen bleek zeer significant te zijn, waarbij RBO0.95 een
waarde van 0.997 behaalde voor transcriptieruis. Ordeningscorrelatie varieerde
tussen perfect en zeer significant. Alhoewel sommige methodes een hogere lin-
eaire correlatie hebben dan anderen, zijn de verschillen slechts zelden significant.
We concluderen dat alle door ons geteste methodes geschikt zijn voor deze taak.
Welke methode het beste gekozen kan worden hangt daarom vooral of van welke
aspecten als meest belangrijk worden gezien voor het gebruik van het systeem.
Bijvoorbeeld, de verwachte vasthoudendheid van de gebruiker bij het inspecteren
van de resultaten, of eigenschappen van de interface.

Na het aantonen van de theoretische levensvatbaarheid van het voorgestelde
raamwerk, hebben we in Hoofdstuk 5 de praktische aspecten bekeken. We on-
derzochten hoeveel referentietranscripten er nodig waren om de hoge correlaties
met MAP te halen die we vonden in Hoofdstuk 4. We deden dit door op een
groot aantal deelcollecties van verschillende lengtes uit een collectie van 400
uur te testen. Dit maakte het noodzakelijk om kunstmatige informatievragen
(of queries) te gebruiken in plaats van de tot dan toe gebruikte queries die
afkomstig zijn uit testcollecties. We ontwikkelden een systeem om kunstmatige
queries te genereren, waarmee we een zelfde correlatie met MAP haalden als
met echte queries. Als we genoegen nemen met een relatieve standaarddevi-
atie in de lineaire correlatie met MAP van (een relatief arbitrair gekozen) 3%,
dan kan de kwaliteit van ASR-in-SDR-context geschat worden met slechts drie
uur referentietranscripten. Dit is vergelijkbaar met wat nodig is voor de tradi-
tionele intrinsieke evaluatie met WER. We concluderen daarom dat extrinsieke
evaluatie van ASR-in-SDR-context kwaliteit net zo eenvoudig is als intrinsieke
evaluatie, zonder dat hiervoor meer materiaal nodig is. Alhoewel we aanbevelen
om door mensen gemaakte queries te gebruiken, die ook het daadwerkelijke ge-
bruik van het SDR-systeem aangeven, bleken kunstmatige queries een redelijk
alternatief te zijn als echte queries niet verkregen kunnen worden.
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